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We consider the phase-ordering kinetics of one-dimensional scalar systems. For attractive long-
range (r"(l“"")) interactions with o > 0, “energy-scaling” arguments predict a growth law of the
average domain size L ~ t1/0+9) for all ¢ > 0. Numerical results for o = 0.5, 1.0, and 1.5
demonstrate both scaling and the predicted growth laws. For purely short-range interactions, an
approach of Nagai and Kawasaki [Physica A 134, 483 (1986)] is asymptotically exact. For this case,
the equal-time correlations scale, but the time-derivative correlations break scaling. The short-range
solution also applies to systems with long-range interactions when o — oo, and in that limit the

amplitude of the growth law is exactly calculated.

PACS number(s): 64.60.Cn, 64.60.My

I. INTRODUCTION

The quench of a system from a disordered phase to
an ordered phase is a nonequilibrium process in which
energy is dissipated and any topological defects are elim-
inated. Typically, the system develops a scaling struc-
ture, with a single time-dependent length scale, as the
growing broken-symmetry phases compete to select the
ordered phase [1]. In this paper we discuss nonconserved
one-dimensional (1D) scalar systems, where the compet-
ing phases are domains of uniform magnetization and the
topological defects are domain walls. We limit our dis-
cussion to the late stages of phase ordering, when the
domains are much larger than the interface width and
the scaling structure, if any, has been established. The
phase-ordering dynamics is driven by interactions be-
tween domains, rather than by the curvature of domain
walls which drives the dynamics of short-range systems
in higher dimensions [2]. For short-range 1D systems this
interaction is through the exponential tail of the domain-
wall profile P] For long-range systems, the domains have
a direct ~(1%9) interaction.

Following work in dimensions greater than one [4-6],
there has been recent interest in 1D systems with at-
tractive long-range interactions. This paper follows up
a broader treatment that determined growth laws for
a wide variety of scaling systems, including 1D systems
with 0 < ¢ < 1 [7]. Lee and Cardy [8] found analytic and
numerical indications of scaling violations and anomalous
growth laws for 0 < ¢ < 1, in addition to results consis-
tent with scaling for o > 1. This motivated us to extend
their numerical studies for systems with o = 0.5, 1.0, and
1.5, and to extend our theoretical treatment to all o > 0
(Sec. IT). We find that larger systems than those studied
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by Lee and Cardy exhibit both scaling and our predicted
growth laws (Sec. IIB).

Short-range 1D scalar systems have been studied both
numerically [9] and experimentally [10]. Nagai and co-
workers have presented a solution assuming uncorrelated
domain sizes {11,12]. We rederive their solution with a
simplified approach, and show that it is asymptotically
exact for systems with purely short-range interactions,
and also for systems with long-range interactions in the
limit o — oo (Sec. III).

A generic energy functional for a 1D system with a
scalar order parameter ¢(x) and short-range interactions
is

. Hig= [ de [@e/ae) + V(@) (L1)
where V(@) is a double well potential such as
V($) = (¢* — 1. (12)

We restrict our attention to a potential with symmet-
ric quadratic minima [13]. We can also add long-range
attractive interactions,

Hyp = f de / et — @)

rlteo

~ Ay Lo, / ARk $rdb_n (1.3)

" where Lo, is the system size and we take o > 0 for a

well defined thermodynamic limit. The long-range inter-
actions dominate the 1D dynamics when they exist, so
we have ignored the short-range component of (1.3) for
o>2 .

After a temperature quench into the ordered phase,
the equation of motion for the ordering kinetics for non-
conserved systems with purely dissipative dynamics is
[14]
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Oip = —0H/6¢. (1.4)
For short-range systems, and long-range systems with
o > 1 [15], there is an ordered phase only at T = 0. We
restrict ourselves to T' = 0, with no thermal noise, for all
cases. For systems with ¢ < 1, our results will be valid
throughout the low-temperature phase since temperature
is an “irrelevant variable” in the ordering process [16].
For ¢ > 1, and for short-range systems, our results are
restricted to the T = 0 dynamics (1.4) above, and do
not apply to kinetic Ising or continuum diffusion mod-
els which have a residual T = 0 noise [17]. This allows
us to study the nontrivial effects of interactions between
domain walls in the phase ordering of these systems.

II. LONG-RANGE ATTRACTIVE
INTERACTIONS

We first treat systems with long-range attractive in-
teractions of the form (1.3). As was shown by Lee and
Cardy for Ising spins [8], the dynamics of the system is
captured by the motion of the domain walls. Consider
two sharp domain walls of the same sign at r; and r;, as
shown in Fig. 1. Their interaction energy E;; is the part
of H1gr that depends on their separation:

I B O ) i L et RN |
By = { —1In|r; —ry, oc=1 (2.1)
where we have scaled out a factor of 8/0. Domains of
opposite sign introduce an overall —1 factor to the energy.
This interaction energy leads to a force

J
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where ¢ € (7;,7:11). We use the saturated values ¢ ~ +1
within the integral, so that the integrals are restricted to
phases with ¢(z') = —¢(z). We also assume that = is far
from all domain walls, so that we neglect 92¢. This leads
to ¢(z) = £[1 — p(z)] with

o0

P@) = 3o 3 ()™l — il + |2~ Tis1em| )

m=0

(2.5)

at large distances from other domain walls (compare [6]).
The force corrections due to the asymptotic profile can be
easily estimated by the energy per unit length of adding
to the ends of the power-law profile between two defects
as they move apart. From the potential term in (1.1),
V(¢) = (¢*—1)® ~ 1729, where the defects are a distance

! apart. From the gradient squared term, the effective

1ot 4o P 1+o
dz'/|z' — 2| +/ dz' /|2’ — z| ,
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FIG. 1. A schematic representation of the 1D scalar system
with domains of ¢ = +1 shown. The domain walls at r;
and r; are “positive,” and the sign of domain walls alternate
along the system. Domain walls of the same sign repel each
other, while those of opposite sign attract each other. The
dynamics for long-range interactions are described by these
sharp Ising-like walls, as is discussed in text.

I‘i I‘j

F;; = —0F;;/0r;

=+, (2.2)
where | = |r; — ;| and the force is repulsive between
walls of the same sign and attractive between walls of the
opposite sign. The domain-wall velocity is proportional
to the summed pairwise forces acting on it [18]:

!
T = E F,;j.
J

When adjacent domain walls meet, they annihilate —
this drives the nonequilibrium coarsening process. We
use the domain-wall dynamics described by Egs. (2.2)
and (2.3) unless specifically noted.

This domain-wall dynamics also holds with the soft
potential V' (¢) in (1.2). Fixing the domain wall positions
{r:}, we use the quasistatic solution of (1.4) expressed in
real space:

(2.3)

" el [4(=!) — $(a)] /o’ — o[+

(2.4)

Tit3ntl

force is {7272, which at late times is always much less
than from the local potential. Since we are assuming
a quasistatic configuration, the change in energy due to
the long-range interactions is of the order of that due
to the potential term, so is also {72, These corrections
are negligible in comparison to the {77 interactions of
“sharp” domain walls (2.2), which we use without loss of
generality.

A. “Energy-scaling” theory for growth laws

We predict the growth law of the characteristic length
L(t) for scaling systems by considering the energetics of
the system [7]. The scaling behavior, or dependence on
the length scale, of the energy density is described by the

long-range interactions (1.3):
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€~ / Ak ($b—i), (2.6)
where the angle brackets indicate an average over ini-
tial conditions. We independently calculate the rate of
energy-density dissipation by integrating the dissipation
in each Fourier mode and using the dynamics (1.4) ex-
pressed in momentum space:

de/dt = / dk((SH/5¢1)0:x)

- / dk (e bired—r) - @.7)

We use the equal-time correlation function S(k,t) =
(prP—_r) to determine the energy density, and the time-
derivative correlation function T'(k,t) = (8;¢r8id—1) to
determine the rate of energy-density dissipation.

If we assume scaling—that the correlations are de-
scribed by one time-dependent length scale L(t) but not
by any microscopic scales—then dimensional analysis de-
termines the structure function:

S(k,t) = L(t) g(kL(2)), (2.8)

where the scaling function g(z) has no time dependence.
This is also known as the dynamic scaling hypothesis
[19]. We apply the same scaling hypothesis to the two-
time correlation function: S(k,t,t') = (¢e(t)d—_r(t)) =
k=1g(kL(t),kL(t'),t/t'). This leads to a scaling form for

the time-derivative correlation function:
(BeprBrd_i) = 8Oy 1= S(k,t,t")
= (L/L)?Lgay(kL) 4+ t2L§,, (kL)
~ (L/L)*Lh(kL),

(2.9)
(2.10)

where §yy, §.», and h are new equal-time scaling func-
tions. For power-law growth, with or without logarith-
mic factors, the §,, contribution does not dominate at
late times and can be adsorbed into A.

If the energy integrals (2.6) and (2.7) are convergent
then we use the_ scaling forms and change variables to
get the L and L dependence. Certainly, the integrals
are convergent for kL < 1 if the thermodynamic limit
exists. However, the integrals may diverge for kL > 1.
For S(k,t), that limit is given by Porod’s law [20], in
which the structure at kL > 1 is proportional to the
wall density pwan ~ L~1,

S(k,t) ~L k™2,

kL > 1. (2.11)

With this and the scaling form (2.8) we determine the
energy density (2.6):

L=tgt— | oc>1
e~<{ L 'In(L/¢), o=1 (2.12)
L=, o<l1.

For o > 1 the integral diverges for kL > 1 and the en-
ergy density is proportional to the domain-wall density,
pwan ~ L™1; for o = 1 the logarithmic divergence of the
integral indicates that structure on all scales contributes

A.D. RUTENBERG AND A.J. BRAY 30

to the energy density; while for ¢ < 1 the integral con-
verges and the energy is dominated by the long-range
interaction between domains.

The interaction energy density €;,, of domains at the
characteristic scale is the convergent kL = 1 part of the
energy integral. This energy density of interaction is
what drives the motion of well separated domain walls:

€t ~ L7, (2.13)

To determine the growth law, we only need the time

derivative of €;n¢, which comes from domain walls moving

at the characteristic velocity L. Near a particular domain

wall the order parameter comoves with the domain wall:

- 8 = —vdp/Ox. (2.14)

The contribution of these slowly moving domain walls in
momentum space is

(BehrBe—iYint ~ Lk (brb-s)

~ I2/L, EL>1  (2.15)

where we use Porod’s law to obtain the second line.
While this expression satisfies the scaling form (2.10), it
is not the full time-derivative correlation function, merely
the part that contributes to the dissipation of the inter-
action energy €in;. We use this contribution in (2.7) to
find

desns/dt ~ 7 L2/ L. (2.16)

The integral diverges for kL > 1, but the divergence re-
flects the internal structure of the domain walls, rather
than small separations with respect to L(t). We compare
the rate of energy-density dissipation to the time deriva-
tive of (2.13) to obtain L ~ L~7, which determines the
growth law:
L(t) ~ tY/(+o), (2.17)

for all o > 0.

We check the consistency of this approach by calculat-
ing the full de/dt. This is easily done in real space, where
from (2.7) we have

de/dt = —L* / dz(8,p(x) ()

~ L™ (4%, (2.18)
where we have used (2.14) to obtain the second line. The
result is the density of domain walls, pwan ~ L"l, times
the average square velocity. Either (v2) = L? and the
energy density is the same as €, or the energy is domi-
nated by the domain-wall energy and the energy dissipa-
tion is dominated by rapidly annihilating domain walls.

For domain sizes | <« L, the force due to nearest neigh-
bors will set the scale of the net force on a domain wall,
so from (2.2)

()| = BL7°,

where the constant prefactor 3, where 0 < 8 < 1, proves

l<L (2.19)
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sufficient to parametrize any shielding due to other do-
main walls. If n;(l) is the number distribution of do-
main sizes, so that n(l)6l is the number of domains
of sizes in the interval [/,l 4 6l], then the number flux
of collapsing domains is given by j(I) = n:(l) [-2|v(])]]
for I « L. The factor of 2 follows since the collapse
rate of a small domain is twice the speed of each of its
walls. When a domain collapses its domain walls van-

ish, merging the two adjacent domains. Hence every do-

main that collapses decreases the total number of do-
mains by 2. Matching 25(£) to the rate of change of do-
main number gives 27(£,1) = ;N = —LLs/L?, where
N = Lo /L = IEOO din(l). Since domain walls annihi-
late at a constant rate over time scales much less than
L/L the domain-wall flux is constant for scales | <« L:
7() = j(&). This leads to

ng (l) ~ ﬁLla

where 8 = 1 if no shielding of small collapsing domains
occurs.

With (2.19) and (2.20) we determine the contribution
of domains of scale [ € L to the average square velocity:

S div? (@) (1)
JE dine (1)

<L (2.20)

(vz)amall =

L
~LL‘1/ e
£

geirt, o> 1
~ ¢ LL'In(L/¢), o=1 (2.21)
LL—7, o<1

For 0 < 1 small domains do not dominate the average
and, since L ~ L™, we have (vz) ~ L2. Indeed, for this
case € ~ €, and the energetics is controlled by domams
at the characteristic scale. For ¢ > 1, the energy-density
dissipation, calculated with (2.18) and (2.21), is consis-
tent with (2.12). However, the energy-density dissipation
is dominated by small annihilating domains and does not
determine the growth law of the average domain size, for
which we have used €;y.

We have numerically studied the average square veloc-
ity of domain walls, as well as the average velocity. In
Fig. 2 we show (v2)/L? and (Jv|)/L vs time. The scaled
velocity is approximately constant away from early-time
transients and late-time small-number effects. Indeed,
a similar analysis to that above shows (jv|) ~ L for
all ¢ > 0. The average square velocity scales well for
o = 0.5. However, for o = 1.0 and 1.5, (v?) is much
larger than L2—corresponding to the dominance of small
rapidly annihilating domains for ¢ > 1. While sparse
statistics for extremely sraall domains leads to sporadic
undercounting of (v?) for o > 1, the scaled square ve-
locity for o = 1.5 agrees with (v2)/L? ~ (LL)™ ~ 1/3,
which is shown by the straight line.
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FIG. 2. The bottom plots show simulation results of the
scaled average domain-wall velocity (|v|)¢”/+) vs time for
o = 0.5, 1.0, and 1.5 with open triangles, squares, and cir-
cles, respectively. The upper plots show the scaled square
velocity, (v2)t2°/(1+9) | ys time with the filled triangles, open
diamonds, and filled circles. The dynamics used are given
by Egs. (2.2) and (2.3). Also shown, for comparison, is the
t'/2 line expected for the scaled square velocity with o = 1.5.
The systems have periodic boundary conditions, a fized time
step, and start with 3200, 1600, and 800 domain walls for
o = 0.5, 1.0, and 1.5 respectively. Note that the statistical
errors shown are not independent.

B. Simulations

To check these growth laws and the scaling of the cor-
relation functions, we perform computer simulations for
o = 0.5, 1, and 1.5. These are the cases considered by
Lee and Cardy [8], and our treatment is motivated by
theirs. We simulate the evolution of systems with sharp
domain walls of alternating sign which annihilate when
they meet. These domain walls are treated as particles.
They interact with long-range forces, f(I) = £{7, where
l is the domain-wall separation. The force is repulsive or
attractive for like or unlike domain walls, respectively.

We first measure the number of domain walls N () as
a function of time, starting from a fixed number placed
randomly [21], and continuing until none remain. With a
domain-wall velocity proportional to the net force (2.3),
we use a simple Euler update for each domain-wall lo-
cation, Ar; = 7;At. Only the early-time behavior de-
pends on the size and nature of the time step At, if At
is small enough. We use a time step proportional to the
time (At = t/20), which for power-law growth results in
a fixed minimum scaled domain size that annihilates in
one time step [22],

Imin/L oc (At/t)Y/ A+, (2.22)

The choice of boundary condition only affects the late-
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time results. We use free boundary conditions [23] for
which small-number effects are not seen until the average
number of domain walls (N) < 1, i.e., when most systems
have fully ordered. We average over at least a thousand
independent runs for most systems, and over at least 50
runs for the largest system size with 12 800 initial domain
walls. :

We expect the domain size L(t), which is the inverse of
the average domain-wall density p(t) = (IV)/Loo, to have
our predicted growth law L(t) = t/(1+9) /®*(5). The ra-
tio of the average domain-wall density to the predicted,
p(t)t/+°) up to the amplitude factor, should be a scal-
ing function of dimensionless combinations of lengths:

P}t/ 0+ = & [p(t)/po, 1/ (p(t) Leo)]

where po is the initial density. In Fig. 3 we plot, for
various o, the scaling function ® as a function of the av-
erage number of domain walls, (N) = p(t)Lo,, on the
left and of p(t)/pe on the right. We see an early-time
transient [i.e., po/p(t) of order 1] which is independent of
the system size, and a small-number regime ((N) < 1) at
late times which is independent of the initial density [21].
At intermediate times the scaling function is constant,
® = &*(0) = ®[0, 0], independent of both the initial den-
sity and the system size. This indicates a scaling regime,
growing with system size, that confirms our predicted
growth law L(t) = t/(142) /&*(5). In Table I we plot
the amplitude $*(o), and also the fixed-point amplitude

(2.23)

p(t)/ o

used by Lee and Cardy, gk(o) = ®*(o) [2(1 + 0")]1/(1'*'”)
[8]. We include the exact amplitude for o — oo that we
derive in Sec. III {see Eq. (3.12)].

In Fig. 4, we plot ® vs (N) with two different boundary
conditions and o = 0.5. The scaling regime is of different
size in the two systems, but the scaling value ®*(0o) is
unchanged. The difference is only in the small-number
regime (N < 20). We note that systems with periodic
boundary conditions and fewer than 800 initial domain
walls, as studied by Lee and Cardy for o = 0.5 [8], do not
probe the scaling regime. We find the expected scaling
growth law, L ~ t2/3 for ¢ = 0.5, in contrast to their
numerical results. ) _

The ratio of the measured energy density, €(t), to the
predicted, € (2.12), should be a new scaling function of

TABLE 1. The scaling amplitudes of the growth law [see
Eq. (2.23)], where gk(0) = ®*(0) [2(1 + 0)]*/***) [8]. These
amplitudes are for the dynamics specified in Egs. (2.2) and
(2.3).

o 2*(o) 9r(9)
0.5 0.200 &£ 0.005 0.42 + 0.01
0.75 0.180 + 0.005 0.37 +£0.01
1.0 0.175 £ 0.005 0.35 £ 0.01
1.5 0.170 4 0.005 0.32 £ 0.01
oo e™VE /2 ~ 0.28 e 7E [2 ~ 0.28
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FIG. 4. Theratio of the measured to expected density up to
a constant factor (2.23) plotted vs the number of domain walls
for o = 0.5. The top figure corresponds to periodic boundary
conditions with no cutoff to the force law, while the bottom
figure corresponds to free boundary conditions. The point
types are the same as for Fig. 3, with stars corresponding to
systems starting with 1600 domain walls.

dimensionless combinations of variables:

e(t)/e = @z [p(t)/po, 1/ (p(t) Leo)] -

In the scaling regime we expect @z = ®z[0, 0] to be con-
stant. We plot €(t)/¢ vs p(t)/po in Fig. 5 for o = 0.5
and 1.0, where we calculate the predicted €, up to a con-
stant factor, from the length scale L(t) = Lo, /(N). We
use periodic boundary conditions to avoid strong end ef-
fects in the energy. The domain walls interact with an
infinite-ranged force law so that all images of a domain
wall around the periodic system are seen (see the Ap-
pendix). Note that only 21 runs are done for the largest
o = 1.0 system. We see the expected early-time tran-
sient independent of system size, an intermediate scaling
regime growing with system size, and a small-number
late-time regime. The energy density for o0 = 1.5 is dom-
inated by the core energy and is simply proportional to
the number of domain walls.

While the growth laws agree with the scaling predic-
tions, to investigate scaling we must consider the scaling
of the correlation functions directly. If scaling holds, the
“energy-scaling” argument determines the growth laws,
but the growth laws are not sufficient to determine scal-
ing. To study correlations, we use periodic boundary
conditions with infinite-ranged forces. We also use initial
conditions randomly chosen from the ¢ — oo fixed-point
distribution [see Eq. (3.9)], which reduces the initial tran-
sients for all o investigated. We generally use At = t/20,
and average over at least 10000 independent runs, but
we present some data at small scaled distances with a
finer time step, At = ¢/80, where we average over 1000
runs.

(2.24)

1905
v E S B e e BRI s 222
0.32f x KRR
£ v YV VY Y ¥ ¥ X z
0.285 v "
E o * ¢
2 a 06=0.5
0.241 x
Ev
V- = E A
- 0.2 1) ol PR Iens| PR AN IR
© 10 10 10° 10" 1
= :
T 0.5 R S e e LSS AN R
© f vy 'vsﬂaﬁﬁguin-""'l
e v M M =] A L=
E A [
0497 7 o A 3
E 3
: ° s E
0.48F 0=1.0 3
- o =
£ . o
0.47C SR NI v el ISR AR ERTS | L1 o
10° 10° 16* 10" 1
P(t)/Po

FIG. 5. The ratio of the measured to expected energy den-
sity (2.24), up to a constant factor, plotted vs the ratio of
measured to initial density of domain walls. The top figure is
for o = 0.5, while the bottom is for o = 1.0. The boundary
conditions are periodic. The point types are the same as the
previous two figures.

We first plot the scaled number distribution of domain
sizes, Fr,(I/L) = (Ln.(l)/N), against the scaled domain
size, ¢ = [/L, in Fig. 6. The exact result for o — oo is
also shown [calculated from Eq. (3.9)]. The straight lines
are the fit, for small z, to the power-law behavior from
(2.20). The deviation from the power law at very small =
is a result of the geometrically increasing time step in the
simulations. Domains of size below ! (2.22) tend to be
uniformly distributed. The filled points have four times
as many updates per time scale, and are correspondingly
closer to the power law. We tabulate the fitted values
of B in Table II. The decreasing values of 3 for decreas-
ing o indicate stronger shielding and greater correlations
between domains.

To obtain the correlation functions, we relate the gra-
dient of the field to the positions of the sharp domain
walls:

N .
r) =23 8(r—r)(-1),

i=1

(2.25)

where the sum is over all domain walls, of alternating
sign, at positions {r;}. This equation gives the correct
discontinuity of the field, 2(—1)!, at the domain walls.
Similarly, the time derivative of the field is

Bep(r) = —zz §(r —r3)(—1)’w;, (2.26)

where v; is the signed velocity of the domam wall. We
then easily calculate
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C" (7,t) = —{Brd(r + 70)Brs d(T0))ro
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=417} / dro Z( —1)9§(r + 1o — 13)8(ro — ;)

ij

= L% | ~48(z) = 2N71 ) (=1)" {6(z — ) + (= + |=44])}

i#g
and

T(r,t) = (Bed(r + 10)8:b(ro))ro

(2.27)

=4L7} fdro Z 1) u0;8(r + 1o — 73)8(r0 — 75)

ij

= (L/L)? |4(v®)L26(z) + 2N ! Z(—
i#Ej

where ¢ = r/L, zi; = (rj —r;)/L, Leo = NL(t), and
(v?) is the average square velocity of a domain wall. The
real-space scaling forms are

C"(r,t) = L72f"(r/L(t)), (2.29)

T(r,t) = (L/L)%(r/L), (2.30)
where the scaling functions f”(z) and b(z) are time in-

dependent if scaling holds. We plot f"/(z) in the top row

Fu(x)

X

FIG. 6. The  distribution = of domain sizes,
Fr(z) = Lny(zL)/N, as a function of scaled domain size,

= I/L(t). Note that we have scaled with respect to the
average domain size L(t). The triangles, squares, and circles
correspond to o = 0.5, 1.0, and 1.5, respectively. The filled
points correspond to simulations with four times as many up-
dates per factor of 2 in time. The line in the upper right is the
ezact result for ¢ — co. The straight lines indicate power-law
fits for small z [see Eq. (2.20)], as expected for a uniform rate
of domain annihilation.

10, 172 {8(z — |zi5]) + 6(x + |z45))}

"“domain walls, v(l)

(2.28)

-

and b(z) in the bottom row of Fig. 7 for & = 0.5, 1.0,
and 1.5. Shown are two times dlﬁ‘ermg by a factor of 4,
both chosen from the scaling region of the scaling func-
tion @ (2.23). There are no discernable scaling violations.
The solid curves through the data are parameterless esti-

mates assuming independently collapsing domains, which
should be valid for small z > 0:

(@) = 2Ny 8(z ~ |oig)
@)

b(z) m 2N~ Y [uyg/LP6( — |i51)
()
~ 4[v(zL) /L) Fr(z)
~ 482 [8* (o) P (1 + o) 222 Fi (),

z <1 (2.32)

where the sum is over neighboring domain walls, ®* (o)
is measured from Fig. 3, and FL(z) is taken from Fig. 6.
Following Eq. (2.19), we have used v(l) = B~ with 8
from Table II. We have also used the scaling amplitude
of the growth law, L(t) = t'/(1+9)/&*(g). For f"(z),
the estimate (2.31), assuming independently collapsing
domains, is excellent at small z. For b(z), the estimate
(2.32) agrees at very small . An intermediate regime,

TABLE II. The coefficient of the velocity of fast-moving
= BI™° for | <« L, obtained by fitting
Fig. 6 by the distribution in Eq. (2.20). For ¢ — oo, the
domains are uncorrelated and 8 = 1 (see Sec. III).

o B(@)

0.5 0.75 £ 0.05
1.0 0.90 + 0.05
1.5 0.95 £+ 0.05
co 1
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which grows with decreasing o, deviates from the esti-
mate and indicates growing correlations between domain-
wall velocities in different domains. For At/t — 0, f"(z)
and b(z) should follow the power laws indicated by the
offset straight lines, corresponding to Fp(z) ~ z° for
z K 1 (see Fig. 6). This is evident for f"/(x) with the data
for At/t = 1/80. For b(z), the regime of independently
collapsing domains, where (2.32) holds, probes domain
scales of our simulations where Fy(z) does not have its
asymptotic small-z behavior [see Eq. (2.22)]. Hence, we
do not observe the regime where g(z) exhibits its asymp-
totic power-law behavior. .

We have not shown the 4(v?)L~2§(z) contribution to
b(z). From Eq. (2.21), we see that this breaks scaling
at 7/L =.0 for 0 > 1 due to small rapidly annihilat-
ing domains (see also Fig. 2). Hence T'(k,t) has a con-
stant contribution that breaks scaling for all k for o > 1.
However, this does not change our “energy-scaling” ar-
gument, which depends, through €;y¢, only on domains of
the characteristic size.

IIl. SHORT-RANGE INTERACTIONS:
CONTINUOUS SPIN MODEL

For systems with only short-range interactions, the
domain-wall profiles lead to interactions between adja-
cent domain walls which drive the phase ordering. From

the dynamical Eq. (1.4), the equilibrium profile of an iso-

10 : T Illlllll
r 0=1.5

T T T IITT,

FIG. 7. Real-space correla-
tions plotted against
z = r/L(t). The top three fig-
ures are the scaled equal-time
correlations f'(z) = L2C"(r,t)
for ¢ = 0.5, 1.0, and 1.5,
while the bottom three fig-
ures are the corresponding
scaled time-derivative correla-
tions b(z) = (L/L)*T(r,¢).
The open circles correspond to
correlations at elapsed times
greater by a factor of 4 com-
pared to triangles. The solid
lines are described in the text:
the upper curve represents a
parameterless estimate of the
correlations, while the offset
straight line represents the ex-
pected asymptotic power law
for small . Deviations from the
asymptotic power law at z € 1
are due to the growing time step
used — the filled circles cor-

1 i74) lll]ll
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! = = respond to simulations with a

E 3 finer time step. The error bars

2 C ] have been suppressed for clarity

10 RRELH L and no data are shown for b(z)
10'2 10'1 1 with > 1/2.

lated domain wall is determined by d?¢/dz? = 4¢(¢% —1)
— which gives an exponential tail to the domain-wall pro-
file far from the domain wall. The domain walls, treated
as particles, are attracted by a corresponding exponen-
tial interaction V(r) = Voe~I"l/¢, where ¢ is the effective
width of the domain wall [3], and a resulting pairwise
force F(r) = —dV/dr = Vo¢~le~I"l/4, The domain-wall
velocities are then simply proportional to their net force.
This case has been studied numerically [9], and has been
solved by Nagai and Kawasaki [11], who only kept corre-
lations between domains during the rapid domain annihi-
lation process. We rederive their results using a simpler
approach [24], which includes the essential correlations
of domain annihilation within the approximation of an
instantaneous domain deletion process. We show that in-
stantaneous annihilation maintains an uncorrelated dis-
tribution of domain sizes, approaches a fixed-point so-
lution, and agrees with the real dynamics at late times.
This means that the solution of Nagai and Kawasaki is
asymptotically exact. Their solution also applies to sys-
tems with long-range interactions in the limit & — co.
For systems with short-range interactions, or for long-
range interactions with ¢ — oo, the shortest domain col-
lapses instantaneously with respect to longer domains as
the average length scale, and hence the typical size differ-
ence, grows without bound. When a domain annihilates,

the two adjacent domains combine into one large domain
which is the size of the original three domains put to-
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gether (see Fig. 8). The three domain sizes are strongly
correlated during the rapid annihilation process, but only
one domain is left at the end, uncorrelated with its neigh-
bors.

We consider a system with no initial correlations be-
tween domain sizes, and consider a set containing all
of the domain lengths. The instantaneous collapse of
the shortest domain corresponds to taking the smallest
length from the set of domain lengths, adding it to two
lengths randomly chosen from the set (which is equiva-~
lent to the lengths of two uncorrelated neighbors), and
replacing the three lengths by one length equal to their
sum. As this procedure is iterated, the distribution of
domain sizes, scaled by the size of the smallest domain,
l;;(t), will approach a fixed-point distribution. There will
be no correlations formed between the lengths of differ-
ent domains because the collapse of the shortest domain
forms a single domain with its neighbors independently of
the other domains in the system. This is similar, in that
respect, to the “paste-all” model of Derrida et al. [24].
Since all higher-point correlations are zero, the domain-
size distribution function describes the fixed point of this
“instantaneous-collapse” model.

If n,(1)él is the number of domains of sizes in the in-
terval [I,1 + 4l] in the entire system, then

N@) = /L " (D, (3.1)

o = f ~ tn(0)dl, (3.2)
L

fe(l) = n:(1)/N(2), (3.3)

FQ/L,t) = Lf.(), (3.4)

where N (t) is the number of domains in the system, Lo, is
the length of the system, f;(l) is the probability density of
domain sizes, and F(z,t) is the scaled probability density
with respect to the minimum domain size I.. Note that
n4(l) is the same as used in Sec. IIA. We will determine
the time-independent fixed-point distribution F(z).
Each domain that annihilates combines with the two
adjacent domains, each of length ! with probability den-

- —0—0—0— 00—

@@ o—

FIG. 8. For systems with short-range interactions, or with
long-range interactions where ¢ —+ co, the smallest domain
will annihilate instantaneously with respect to larger domains.
A single large domain is formed of size equal to the smallest
domain and its two neighbors. The filled circles indicate do-
main walls.
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sity fi(I). Conversely, for each domain that annihilates,
one large domain is formed at length ! with a probabil-
ity density coming from two domains combining, one of
length I’ and the other of length [ —1’ — L, both restricted
to be larger than L. In a time interval 8¢, the minimum
length will shift by 6L = L(t + 6t) — L(t), and n,(L)6L
domains will annihilate. This leads to an evolution equa~
tion for the number distribution n.(l):

nt+5t(l) - Tlt(l) + nt(f,)sz/

[th(z)+/ dU' f. (1) fo 1 — )

xO( -1 — 2f,)] . (3.5)

The evolution equation for the scaled probability density
F(z,t) follows:
LdF(z,t)/dL = F(x,t) + zdF(z,t)/dz
(o]
| +F(1,8) / &' F(z, ) F(z — 2 —1,1)
1

xO(z — 2’ —2). (3.6)

Using the Laplace transform, o(p,t) =
J° dze P F(z,t), we obtain

Ld¢/dL = —pdp/dp + F(1,t)e™® [¢* —1].  (3.7)

For the stationary solution we set d¢/ dL = 0, use
#(0) = 1, and force consistency on d¢/dp|p=o to deter-
mine F(1) = 1/2 [25]. Hence the stationary solution to
3.7) is

¢(p) = tanh[E, (p)/2],

where E1(p) = f:° dze ™™ /. This agrees with Nagai and
Kawasaki [11]. Expanding the tanh and doing the inverse
transform leads to a scaling fixed-point distribution

- =),

z>1 (3.9)

(3.8)

[(z—1)/2]

oo 2i+1
dz;
Z Aziy / J5

=0

F(z) =

where the first sum is for all ¢ such that > 2i{ + 1, and
2™ A, are the Taylor expansion coefficients of tanh(z).
The fixed-point distribution is piecewise analytic, with
discontinuities at z = 2¢ + 1 in the 2ith derivative for all
integer ¢ > 0. The fixed-point distribution is simple for
small x:

z €[0,1)

F(z) = z €1,3]

0,
{ Ve (310)
but gets progressively more complicated in every succeed-
ing interval of width 2.

The growth law of the average domain size, L(t) =
Lo /N(t), is derived by matching the flux of annihilat-
ing domains j(£) to the flux of domains coming from

_.the minimal domain size L. From the discussion lead-

——————EEEE———E L REEE—————
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ing to Eq. (2.20), the flux of annihilating domains is
given by j(¢) = N/2 = —LN/(2L). For systems with
short-range interactions, the flux at Lis given by j(i) =
—(N/l.})e‘ﬁ/e, where ng(f,)~= (N/L)F(1) is the number
density of domains at scale L, they are collapsing at a rate
—2e~L/¢ (twice the speed of each end), and F(1) = 1/2.
Equating these fluxes gives a logarithmic growth law

L = ¢ln(t/to),

where to depends on the form of the potential V(¢).

For systems with long-range interactions, with o — oo,
we can also obtain the exact growth law. The flux of
annihilating domains is again given by j (&) = —LN /(2L).
The flux at L is now given by ](L) -N /LL", where
the domains of scale L are collapsing at a rate —2L-°.
Equating these fluxes gives d, Jdt = 2L~7, and so L(t) =
2e¢75¢1/(1+9) in the 0 — oo limit. This determines the
scaling amplitude in that limit:

(3.11)

8*(00) = gh(00) = e~ 75 /2 = 0.28, (3.12)

where the fixed-point amplitude used by Lee and Cardy
is gp(o) = ®*(o) [2(1 + 0')]1/ (+e) [8]. This exact result
is comparable to the perturbative calculation by Lee and
Cardy, who found g} (o) =~ 0.33.

The average domain size is given by

= (L/L)

TSR(T‘, t)

& (L/L)*{4(v*)L7%6(x) + 4F(j=|)[v(]=|L)/L]},

where z = r/L, Fi(z) is the domain distribution function
scaled with respect to the average domain size L, and
(v?) is the average square velocity of a domain wall. The
equation becomes exact, though the scaling behavior is
unchanged, if we use the root-mean-square velocity of a
wall of a domain of size ! in the second line rather than
v(l). For both short-range and ¢ — oo systems, the
average square velocity is dominated by the tiny flux of
annihilating domains. Following Eq. (2.21), the average
square velocity will be

L
() ~ LI / dlv(l). (3.16)
£
The integral diverges at small [ for both short-range
systems and long-range systems with ¢ > 1, and the
square velocity is dominated by small a.nmhlla.t;mg do-
mains, (v?) ~ L/L. Hence the scaling (2.10) of the
time-derivative correlations (3.15) is broken at z = 0.
The scaling for z > 0 holds if v(zL)/L is time indepen-
dent. For long-range interactions, with v(l) ~ =% and
L ~ L~°, this is true and the T'(r,t) scales for r/L > 0.
For short-range interactions, v(l) ~ e~%%. Since L =
&1n (t/to), (3.11), scaling only holds at = = L/L ~ 0.28,
and is broken at all other .
There will be small correlations between the sizes of

4(v*)L7%65(2) + 4N (-

1909
L) =1 / oF (z)dz
1
= — L dplyes
= [2e7®, (3.13)

where we have used the asymptotic form of (3.8), and
vg = 0.577 is the Euler constant. This agrees with Nagai
and Kawasaki [11] and numerical results [9].

The scaled distribution of domain sizes, Fr(z)
Ln:(zL)/N, is plotted against the scaled domain size,
z =1/L(t), for o = 0.5, 1.0, and 1.5 in Fig. 6. The exact
result for 0 = oo is also shown. As o increases, the dis-
tribution approaches the o — oo fixed-point distribution.

The structure function is calculated by Kawasaki et al.
[12] from the Fourier transform of (2.27) and the domain-
size distribution function:

4 1—|tanh[Ey(ikL)/2]|?
k2L (1 + tanh [Ey (ikL)/2)12

S(k) = -(3.14)

which, because L/ L is constant, satisfies the scaling form
(2.8).

Since domains annihilate independently and only ad-
jacent domain walls have correlated velocities, the real-
space time-derivative correlation function (2.28) is sim-

plified:

1) w0, L7265 (|a| — |i5])

(i7)
(3.15)

[
different domains because the suppression of the motion
of domain walls relative to those of the smallest domain
is not complete. The strongest of these effects is the slow
evolution of adjacent domain walls in any given domain
of size L; > L. The strength of this evolution is char-
acterized by the fractional length change AL;/L; of the
domain before it is annihilated or combines with another
domain. We overestimate AL; by neglecting combina-
tion events and integrating the length change until the
domain is of the scale of the shortest domain (where it
must annihilate):

L;

AL; ~ / dL'R(E), (3.17)
i

where R is the ratio of the average force on a domain
wall to the evolution rate of the minimum domain size,
dL /dt. We also neglect the direct force between adjacent
domain walls in comparison to the contribution of shorter
adjacent domains to R. For short-range forces,

R~ / de(m)e—f’z/e/(Ze_z/e)
. 1

~ LlE / 4o s/
1 4z

~ ¢/(4L), (3.18)
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where F(m) is the fixed-point distribution of the scaled
domain size (3.9). Hence

AL;/L; ~ (¢/L;)In (L;/ L),

and the effect of the slow drift vanishes at late times as
L — oco. For long-range forces, the same calculation leads
to : )

(3.19)

R~ /1 daF (a)(La) /(2L 77)

~ /oo d_mx_d
- 1 4z
= 1/(40).

Hence the fractional change due to the slow drlft is given

by

(3.20)

AL;/L; ~o7*(1 - L/Ly), (3.21)
and vanishes in the limit ¢ — oo. Hence as L/¢ —
o0 or ¢ — oo, the slow evolution of adjacent domain
walls in domains larger than the minimum size can be
neglected. For power-law interactions, the scale of the
cumulative effect of interactions between domain walls
at larger distances, r > 2L, is smaller by a factor of
S ,n7% and also vanishes as o — co0.

We see that our “instantaneous-deletion” model agrees
with the evolution of a real system in the limit as t = co,
and so has the same fixed-point solution that we have
exactly determined. Any initial long-range correlations
between domain sizes will necessitate a more complex
treatment (see, e.g., [26]), though we expect any short-
range correlations to vanish as the system coarsens.

IV. CONCLUSIONS

From the energetics of scaling 1D scalar systems, we
predict growth laws L(t) ~ t1/(+°) for all ¢ > 0. This
growth law is of the same form as the length scale given
by a collapsing isolated domain (2.2). The intuitive pic-
ture is of collapsing domains leaving “voids” which set
the growing length scale. These growth laws agree with
previous predictions for 0 < o < 1.[4,7]. We confirm

fO)=-1""+ Z

n=1

0o — 1) —
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our predicted growth laws, with simulations for o = 0.5,
1.0, and 1.5—one value in each of the three regimes of
the equilibrium system. Different boundary conditions
and system sizes only affect the late-time, small-number
regime of our simulations, and so the thermodynamic
limit is well behaved. The anomalous growth law seen
by Lee and Cardy [8] for o = 0.5 was the result of large
finite-size effects—a scaling regime appears for larger sys-
tems than they considered. The nonanalyticities seen by
Lee and Cardy [8] for 0 < ¢ < 1 must be controlled
in an infinite system with a fixed initial density. We
find that the equal-time and time-derivative correlations

“scale for r/L > 0 at o = 0.5, 1.0, and 1.5. For r <« L,

correlations can be well approximated by assuming that
domains collapse independently. This approximation be-
comes better with increasing o. For ¢ > 1, scaling of the
time-derivative correlations does not hold at /L = 0 due
to small rapidly annihilating domains.

For purely short-range interactions, and for long-range
interactions in the ¢ — oo limit, we show that the so-
lution by Nagai and Kawasaki [11] of the domain-size
distribution, which assumes uncorrelated domain sizes,
is exact. Hence their expression for the structure factor
(3.14), which satisfies scaling, is also exact. We determine
the time-derivative correlation function, which breaks
scaling at core scales, and more generally for systems with
purely short-range interactions. For systems with long-
range interactions described by (2.2) and (2.3), we deter-
mine the exact growth law amplitude in the ¢ = oo limit,
L(t) = t¥/(+9) /g% (c0) with gh(c0) = e~ 75 /2 ~ 0.28.
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 APPENDIX: RESUMMING DOMAIN-WALL
INTERACTIONS IN A PERIODIC SYSTEM

With long-range forces in a periodic system, each do-
main wall interacts with an infinite number of images of
each other domain wall. Using the interaction (2.2), the
total force between two domain walls is given by

(nLoo +1)~7]

= =7+ SN / gt 1o~ (LoDt _ g—(nLentD)?)

n=1
I 4 o0
Loo

= o

drz?

_ysinh [1/(aLoo)] =/

sioh [z/2] (A1)

where [ is the closest distance between the domain walls around the loop and L, is the system size. The force is
attractive along their nearest separation if the domain walls are of opposite sign and repulsive if of the same sign.
The interaction energy can be similarly calculated using (2.1):

l1—0o
Lo

— ji-o
R vy A

E(l) - F(L)

oo
dxz® 2 [

oc#1

cole/L) 1] -, (a2)

sinh(z/2)
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where we have adsorbed a factor of (¢ —1)~*. An overall

—1 factor is introduced between domain walls of opposite

sign. For o # 1 the integrals are done numerically and

stored in lookup tables for use in the simulations. For
= 1, the integrals can be done exactly:

fo=1(l) = —mLZ} ] tan (ml/ Loo), (A3)
Eoei(l) = Eg=1(Loo) =Inl+1n [2’31—3’7!{7]21)] (A4)
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