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Dynamical scaling: The two-dimensionalXY model following a quench
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To sensitively test scaling in the two-dimension@Y model quenched from high temperatures into the
ordered phase, we study the difference between measured correlations é&hting) results of a Gaussian-
closure approximation. We also directly compare various length scales. All of our results are consistent with
dynamical scaling and an asymptotic growth law (t/In[t/to])*/ though with a time scalg, that depends on
the length scale in question. We then reconstruct correlations from the minimal-energy configuration consistent
with the vortex positions, and find them significantly different from the “natural” correlations — though both
scale withL. This indicates that both topologic&fortex) and nontopological “spin-wave” contributions to
correlations are relevant arbitrarily late after the quench. We also present a consistent definition of dynamical
scaling applicable more generally, and emphasize how to generalize our approach to other quenched systems
where dynamical scaling is in question. Our approach directly applies to planar liquid-crystal systems.
[S1063-651X%99)07607-3

PACS numbe(s): 05.70.Ln, 64.60.Cn, 61.30.Jf

I. INTRODUCTION dynamical scaling underpins most theoretical descriptions of
phase-ordering structur¢l,25-27. Unfortunately, apart
The study of nonequilibrium dynamics in systems with from a limited number of solvable systems, there exist no
continuous symmetries has burgeofigfl Liquid-crystalline  theoretical approaches #opriori determine dynamical scal-
systems[2—8|, evolving after being quenched into an or- ing. Indeed, the presence or absence of dynamical scaling
dered phase, provide picturesque examples of topological deemains an unresolved issue in the 2IY model[18,22.
fects and their interactions. Evolving systems of topologicalThis is surprising, since simple systems that break scaling
defects are also found in applications from cosmolf@fyto  are seen as exceptiofidg]. For example, the weak-scaling
planar ferromagnetisl0,11]. violations in the conserved spherical model identified by
A relatively simple system with a continuous symmetry is Coniglio and Zannetti29] are due to noncommuting spheri-
the two-dimensionalXY ferromagnet with no disorder, cal and asymptotic time limit§30] related to similar phe-
which supports singular vortices that carry topologicalnomena in equilibrium critical dynamidS1].
charge and have logarithmic interactions. The equilibrium Stronger scaling violations are found in one- and two-
properties have spawned a rich and fertile literature punctudimensional systems with nonsingular topological textures
ated by the work of Kosterlitz and Thoulegk2]. More re- [11,32. These systems segregate into domains of similarly
cently, the nonequilibrium behavior of the two dimensionalcharged textures, similar to the morphologies seen in
(2D) XY model following a quench to below the Kosterlitz- reaction-diffusionA+B—(J systemq33]. The domain size
Thouless critical temperatufB; has been studied theoreti- and the texture separation provide distinct growing length
cally [13-2Q and also experimentall}3,5] with specially  scales. Within this context, the difficulty in resolving scaling
prepared liquid-crystal systems. Related 2D liquid-crystain the 2DXY model can be understood. Viewed as a plasma
systems have also been studied theoretic#ly—23 and of overdamped charged vortices with logarithmic interac-
experimentally{2,4,8]. tions [34], quenched from high temperatures, the XI¥
Following a quench at=0 from a disordered phase into model sits exactly at the marginal dimensiai=2) below
an ordered phase, a crucial issue is whether there is dynamithich segregated morphologies with strong scaling viola-

cal scaling[24] at late timeg, where tions are expected, and above which a mixed morphology
R R with only one length scale, the particle separation, is seen
C(r,t)=(p(x,t)- p(x+r,t))=1f(r/L). (1) [10]. Suchparticle systems are expected to scale, with no

domain structure, at the marginal dimens{df]; however,
Here, <Z> is the XY order parameter,f(x) is a time- the asymptotic regime could be quite late.
independent scaling function for the two-point correlations, With dissipative dynamics and the assumption of dynami-
andL(t) is a growing length scale that captures all of thecal scaling the predicted asymptotic growth law of the char-
correlation dynamics. The explicit or implicit assumption of acteristic length scale {27]

L(t)=A(t/In[t/ty]) 2 2
*Present and permanent address: Centro de Ciencias de la Materia
Condensada, UNAM, Apartado Postal 2681, Ensenada, B.Cwhere A andt, are the nonuniversal amplitude and time
Mexico 22800. scale, respectively. This growth law characterizes the corre-
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lations with a lengthL,,(t), whereC(L45,t)=1/2, as well  struct a two-point gradient correlation function, within the
as the vortex separation with a length-sdalét), where the  periodic system using only the vortex positions and charges,
vortex densitypqer=1/L2. These lengths will only differ by ~and find it significantly different from the unreconstructed
prefactors and by subdominant contributions at late timesScaling form. However, both correlations scale with respect
[Equation(2) also describes the annihilation time of an iso-t0 the defect density. This indicates that both topological
lated vortex-antivortex pair with an initial separatibfil7].] ~ (vortex and nontopological “spin-wave™ contributions to
The logarithmic factor is crucial, and stems from the loga-the order parameter are asymptotically relevant, with charac-
rithmic vortex mobility. The same growth law is expected in teristic lengths that remain asymptotically proportional.
liquid-crystal films with vortice§27].

The analytical evidence for scaling violations is mostly II. DYNAMICAL SCALING
suggestive: explicit violations in four-point correlatiofis] ) ) ] )
and multiple energy scales seen in energy-scaling calcula- N Phase ordering, dynamical scaling colloquially means
tions[27]. These would indicate multiple lengths that differ that there is a single characteristic length scale growing in
at most by logarithmic factors, consistent with the marginafime. This leads to a rough-and-ready symptom of dynamical
dimensionality within a reaction-diffusion conte)t0]. In- scaling violations: multiple length scales with distinct growth
deed, approximation schemes for correlation functions in théaWs, see for examplg22,38. While useful as a guide, this
2D XY model typically find scaling but with no logarithmic @PProach has limitations. One must first identify each
factors (see, e.g.[26,35; see alsd36]). Additionally, the asymptotic g_rowth law, i.e., th.e.effe.ctlve exponent after it is
2D XY model quenchedetweentwo temperatures below constant in time and before finite-size effects of the sample
Tx7, and coarse grained to a fixed scale to eliminate boun§€come important. Practically speaking, at most one or two

vortex pairs, is solvablE37] and dynamically scales without decades. in_ tim_e are available in simulations if a 5% expo-
any logarithmic factoL(t)NtHZ_ nent variation is tolerated, and often less than a decade in

Previous numerical evidence for scaling violations is€xPeriments. When the scaling prediction for the growth law
stronger. Cell-dynamical simulations ofXY models IS notapriori known, this approach on its own is dangerous.
quenched td =0 by Blundell and Bray18] found that two- Indeed, subdominant corrections to the asymptotic growth
point correlations did not scale well with respect to the de-law [39] can depend on the m_ethod used to extract the Ie_ngth
fect separatiorL,, though they scale with respect to the spale[40]. Even the observation of two asymptotically dis-
correlation lengthL ., (see also[15,20)). Mondello and tnct length scales does not demonstrate that they are dy-

Goldenfeld[13] also found indications of multiple length n_amlcally interconnected. A silly _example helps here: con-
scales. Simulations of nematic films by Zapotoeiyal.[22] 5|_der a sample made fro”? gluing togel'gher a conserved
found a variety of effective growth exponents, though agairpmary'"’IIIOy systen(_asymptotlc growth law'®), and a Don—
the correlation function appeared to sciee alsd21,23).  conserved order-disorder alloy systefgrowth law t 9.
Other simulations on the 2RY model at finite temperatures Clearly two-growth [aws COUIQ be _obsgrved in the hyt_)rld,
have recovered the expected growth IE7,19, and have but they should not imply scaling violationsSuch dyn_aml—
found dynamical scaling19]. Simulations of quenches to qally mdependentsubsystems would I.ead to co.rrela'tmn'func—
T=0 in hard-spin systems found dynamical scaling of cor-tions that are sums of scaling functioh3he situation is
relations even though the dynamics froze at late tifie! more complicated when both lengths are obse_rved Wlthln a
Experiments on liquid-crystal systems, following the pio- homogeneous sample, .SUCh. as the asymptotic be_h_awor of
neering work by Shiwaket al. [2], have recovered the? !”nonopolgs an_d vortex lines in bulk nematj€§. Nontrivial
growth of defect separation after a quench, though with in_mterrelanonshlps of observed lengths can generally only be

sufficient resolution to determine logarithmic factpds-5,8 resolved with the help of simplified dynamical models, for
and with some difficulties in achieving an unbias@ym- example, 38@32’_411' I . L
metric) quenct{4,5]. When measured, the structi@eg] and A more precise definition of dynamical scaling is that

other two-point correlations are consistent with dynamicalt\’vo'pOInt equal-time correlations have a time-independent

scaling[3]. scaling form, see Eq.1), which also implies scaling of the

In this paper we want to clarify the existence or absencétructure factor
of dynamical scaling in the 2BXY model. A successful strat-

egy can then be applied more generally to systems that seem S(k,t)=((k,t)- (—k,t)y=Lg(KL), 3
to violate scaling, in particular to systems with more compli-
cated collections of defec{g8]. whereg(x) is a time-independent scaling function. This is

We first discuss the appropriate definition of dynamicaldirectly measured in scattering experiments, can be well ap-
scaling, within the context of systems relaxing after aproximated analytically, and is easy to extract from simula-
quench. We then derive approximate forms for various cortions. For systems with singular topological defects, such as
relation functions via Gaussian closure techniques, whiciflomain walls, hedgehogs, vortices, or vortex lines, a gener-
impose scaling. While we do not expect them to exactlydlized Porods layl] connects the density of defect corg.¢
match the measured correlations, they are used to normalize the asymptotics of the structure via
the measured values in order to enhance our sensitivity to
scaling or its absence. In combination with the growth law, S(k)~paedk ™ M, kL>1, 4
we have a “null hypothesis,” which would be broken by
scaling violations. We present our simulation data and findvheren characterizes the defect tyffer the 2D XY model,
no evidence for scaling violations. We then explicitly recon-n=d=2]. This directly implies that the length derived from
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the defect density, is asymptotically proportional to the An overview of the evolution: we start with a random
correlation lengthL,, when the correlations dynamically high-temperature configuration and quenciTte0. The or-
scale. der parameter locally equilibrates, but competition between
This definition is still incomplete, since systems can sat-degenerate ground states leads to topologically stable vorti-
isfy Eqg. (3) yet have distinct lengths intimately connected byces, with integer charges. The annihilation of oppositely
the dynamics — e.g., in the one-dimensio(idD) XY model  charged vortices drives the subsequent dynamics, and char-
[32]. Additionally, higher-point correlations can be con- acterizes one possible growing length scale — the vortex
structed in the 2DXY model, which explicitly donot scale  separatiorL, . Of course, the order-parameter field around a
[16,42. Should these be viewed as violations of dynamicalmoving vortex is not rigidly comoving27], and so nonsin-
scaling? Fortunately a self-contained definition of dynamicalular “spin-wave” distortions are generated by the dynam-
scaling exists, introduced by Bray and Rutenbg2d]. In ics even afT=0. The dynamics, emphasizing the vortices,
order to calculate the rate of free-energy dissipation in aan be visualized with a Schlieren pattern, see Fig. 1, analo-
coarsening system, they additionally require the scaling ofous to those used in the study of liquid-crystal filp4§].
the time-derivative correlation function Scaling correlations from Gaussian closurgeveral ap-
proximation schemes eliminate high-order correlations in the
T(r,t)E<o7tg?>(x,t)-&tqz(x+r,t)>=(L/L)2F(r/L), (5 evolution equation for two-point correlations
[1,25,26,35,46 We use a Gaussian-closure approximation,
whereF is a new time-independent scaling function and Which gives quite good two-point correlations. We will use
=dL/dt. Note that power-law growth, with or without addi- the results_t.o normalize our correlathns. This allows for a
tional logarithmic factors, implies that the prefactdr/[()? mglrebsefnsmve (tjeslt ths.call!n% properkues than Pff been posr;
~1/t?. If dynamic scaling holds both foF(r,t), as just de- sible before, and also highlights weaknesses of this approac

) (see alsd15,47).

fmeq, and forC(r,1), then the.growth exponent can be de- For generaD(n) fields, we start with the Bray-Humayun-
termined through a self-consistent energy-scaling approach ) _ o L
[27,43. This restricted definition of dynamical scaling, of °YOKi approach[35]. We introduce an auxiliary fieldn
bothC(r,t) and T(r,t), picks up the scaling violations of the parallel to the order parametar= ¢. The zeros ofn match

1D XY model[32], and clearly separates the role of two- the positions of the topological defect cores, wHite| is
point from higher-point correlationf42]. We use this re- roughly the distance to the closest defect core. Assuming a

stricted definition here, and recommend it in the study Ofgayssian probability distribution fan results in two-point
systems where dynamical scaling is questioned but Eq. &yrelations betweerr (,t,) and (,,t,):

seems to be satisfied.

Ill. DYNAMICS n'y[ (1 n+1 n+2
B

1 2

We study purely dissipative quenches of XY models Colrtuto) =5 22 7 )
from well above to below the Kosterlitz-Thouless transition (7)
temperaturd 1. Because of the line of critical points in the
2D XY model [12] the correlations in quenches to<@
<Tkr have a modified scaling formi19,37]. Essentially, where r=|r,—r,|, B(x,y) is the beta function, and
critical equilibrium correlations have no characteristic lengthF(a,b;c;z) is the hypergeometric function. The result is ex-
scale and so the standard coarse graiiitigto make tem- pressed in terms of the the normalized two-point, two-time
perature irrelevant to large-scale correlations is impossiblezgrrelation function ofn:
However, there is no indication that temperature changes dy-
namical scaling, or its absence, in the XI¥ model. Accord-
ingly, in this paper, we only investigate quenchesTte 0. _ 2 2 172
The nonconserved coarse-grained dynarfdeg are y=(mL)mE2))/L{m (L)) M(2)) 17

N
T
—
N -

F[<Z]=f d3X[(V )%+ Vo(h?—1)?], The various approximation schemes differ on the manner
of determiningy. We use the the systematic approach intro-

- - duced by Bray and Humayyd6] that produces
db=—T 6F164, YRy yUe] that p

d/4
exp{—ré[4(ty+t)]}, (8

($(x,0)- d(x',00)=AS(x—X"), (6)

4t4t,

(rty,ty)=| ———
T (ty+1y)?

wherel is a kinetic coefficient that sets the time scalg,is

the potential strength that sets the “hardness” of the vector
spins, andA characterizes the initial disordered state. Thewhered is the spatial dimension. For equal-time correlations,
orientation of the two-component order-paramef¢k) de- we obtain the scaling fornCy(r,t) =fgpr(X), where x
fines an angled(x) [ 0,27], which is identical to theXY =r/L andL(t)=(4t)¥2 This highlights a problem with all
phase. The numerical implementation of the dynamics is disexisting correlation-closure approaches as applied tX3D
cussed below in Sec. IV A. models, since while they recover a scaling form they miss



PRE 60 DYNAMICAL SCALING: THE TWO-DIMENSIONAL XY ... 215

t =320 t =640

FIG. 1. Schlieren patterns in various times after a quench of th¥ 2nodel in a size 128 128 system. The intensity is ${&6), where
0 is the localXY phase. Each vortex emanates 8 brushes, alternating white and black.

the logarithmic factor in the growth laf86]. The same scal- IV. SIMULATION

{?ognvanable is used in the time-derivative correlation func- A Simulation methods
' We use a standard cell dynamical systei@®S) update

[48] for soft spinsé(i,t), on a periodic lattice, whereis
1 now a discrete integer time ands the position:
Tolr.0= 25 172C,, () + (' 4x+24)C, ()], g P

~ D - -
(©) dlit+1)=7 2 [$(.0)-d(i0)]

whereC,=dCy/dy andC,,,=3d*Cy/dy>. +Ea(i,t)tant | (i, 1)1, (10)
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o

whered = ¢/| $| is the unit vector. We use the standard val- _
uesD=0.5 andE=1.3. The dynamics are stable and have d6/dy= anw sin(2mx)/{costi2m(y+n)]—cog2mx)},
the same attractors as E@). We do not observe pinning -

effects in quenches t6=0 (see alsd13,15,18,21,2p. The ) ) .
random initial conditions are chosen uniformly for eachWherex andy are the relative coordinates of the vortex in a

component fronf —0.1,0.1]. system of size unity. The solutions for every vortexith

We identify vortices with three methods that prove *1 factors for vortices and antivortices, respectiyekiere
equally effective: by looking for the zeros in the vector field, @dded together for every point in the system to obtain the
by looking for plaquettes around that the phase rotategully penodu;mlnlmal—eljerg)phase field qon3|stent with the
through =2, and by finding the peaks on the local energyO"€X configuration.[Direct reconstruction of the order-
density E;= — =, (i) - ¢(j), where the sum is over nearest Parameter fieldh proved intractable due to various counter-

] ) . . . e
neighbors of sité. Due to the periodic boundary conditions, Charge effects imposed by the periodic boundary conditions.
the system has no net vorticity. In principle we could use ouV § reconstruction to recover

In addition to tracking the number of vortices, we mea-t1€ order-parameter field with additional line integratigns.
sure several correlations of the “hardened” order parameter-,r0 obte_un more accurate vortex positions, we first identify
A the lattice plaquette by windings or energy peaks, then we
¢ (1. use bilinear interpolatioh50] to more accurately locate the

zero of the order parameter within the plaquette. The sign of
the vortex is determined by the winding of the phase field

C(r.H)=((j.t)- p(j+r1.1)). (1) around the plaquette.

The average(---) is over the independent sets of initial
conditions, and includes a spherical average and an average
over lattice siteg. The structure factor is also calculated: We simulate a size 522512 system, averaging over 40
independent samples. We check that there are no significant
finite-size effects in comparison to a 28856-size system,
S(k,t)=<<;$(—k,t)-gz§(k,t)>. (12) with 20 sampl_es. The data for recpnstructed correlations is
currently restricted to the 256256-size system.

In Fig. 2(a), we plotC(r,t) with respect to distance scaled
by Ly, [C(Ly,t)=1/2]. The scaling is excellent, and the
Gaussian-closure resulfgpt, solid ling is indistinguish-
able from the data. In Fig.(B), however, the scaling col-

- . - . lapse is not good with respect to the vortex separdtign
T(r,)=(6¢()- &b(j+1)), (13 wherep=1/L7] [18]. It is difficult to tell from this second
.. . plot alone whether scaling simply has a later onset time, or if
wheredip= ¢(t+1)— ¢(t) is afinite difference approxima- scaling violations are indicated. This must be determined by
tion for the time derivative. a direct comparison of the length scalgsandL,,, as well

To probe the distinction between vortex and nonvortexas by a study of the time-derivative correlatiof& ,t), as
contributions to correlations, we measure a phase-gradieffiscussed in Sec. Il.
correlation function: By normalizing the correlations with the Gaussian-closure

result C; we can sensitively probe scaling with the real-
space correlations, see Fig. 3. Whilg is clearly too small

B. Simulation results

We also measure the time derivative correlation function,

D(r,t)=(Vo(j+r,t)Va(,t1)), (14 at large-scaled distance, correlations scale relatively well for
t=1000.
=h(r/L)/L? (15) The structure factor scales with respectitg=1/Kk), its

inverse first moment, see Fig. 4. Also shoyaolid line) is

the Fourier transform of the Gaussian-closure prediction,
hich slightly but systematically under and overestimates

the structure. By using a log-log plot we emphasize the

S(K)~ pgek 4 generalized Porod tail fok/(k)=2, as per

Eq. (4). The good scaling of the Porod tail, which is deter-

mined by the vortex density, indicates tHat~L, asymp-

where the second line is the natural scaling ansatz for th
correlations. Note thatV#)=0. We then reconstruct the
vortex contributionD,(r,t) directly from the charges and
locations of the vortices at a given time. From the vortex
positions we build up the phase fie¥ié(j) using the peri- totically

odic image of the minimal energy solution for each single We r;ow directly test the assumption that all lengths as-

vortex, VZ6=0, due to Grabech-Jensef49l: ymptotically have the scaling growth law of E@) by plot-
ting t/L2 vs Int for Ly, Ly, andL,, in Fig. 5. The scaling
c prediction is a linear plot, with nonuniversal slope and inter-
do/dx= _Wn;m sin(2my)/{cosli2m(x+n)] cept given by the amplitudd and time scalé,. [Both of
these can vary from one length scale to anofHenearity is
—cog2my)}, observed for It=7.7 (t=2200), in agreement with Fig. 3.
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FIG. 2. (a) Real-space correlations vg=r/L;,, where

C_(L_l,z): 1/2. The continuous curve represents the theoretical preyyhile scaling only sets in for=2000, it is supported by the
diction fgpr(x). (b) Attempted scaling with respect to the vortex y4i5 This correlation function has much more structure than

density.
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FIG. 3. The difference between measured correlatiofs,t)
and the Gaussian-closure predictig normalized byC, and plot-
ted against scaled distance.
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In[<k>%S(k,t) ]
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F
TV [T T[T T T[T T T[T T T[T T T[T T T[T &

1 05 0 05 1 15 2 25 3 35 4
In( ki<k >)

FIG. 4. The structure factor in a log-log Porod plot. The first
moment(k) is used to rescale momenta. The continuous line is the
Gaussian-closure prediction. Symbols are the same as the previous
figure.

We have fit them with straight lines with the same amplitude
A but differentty. The correlation length ;,, has the stron-
gest corrections to scaling, which is one cause of the bad
scaling ofC(r,t) when plotted v4., in Fig. 2(b). It is worth
noting that the growing length scales can also be well fit
using effective exponents of 0.42, 0.40, and 0:40(01),
respectively, without logarithmic factors — see aJ48,22.
However, if these effective exponents were asymptotically
valid, and hence disagreed with the scaling prediction of Eq.
2, we would not see scaling in the correlatid@g].

While the two-point correlation€(r,t) and S(k,t) sup-
port dynamical scaling, we must also investigate the time-
derivative correlation functionT(r,t), as discussed in Sec.
Il. In Fig. 6, we scale lengths with respect ltq,,, and re-
move the prefactor in Eq5) by plotting T(r,t)/T(Lq,t).

5.2

v L)

5

4.8

4.6

4.4

4.2

4
o L1/2
3.8 AL,
3.6 [ ° L
11 | 111 | 111 | 11 | 111 | 1 1) | 11| | 111
68 7 72 74 76 78 8 82 84
In(t)

FIG. 5. We plott/L? vs Int for three lengthst 15, L, andL, .
The observed linear dependence at late times indicates that the dy-
namical scaling growth law, Eq2), holds. As shown by the paral-
lel straight lines, the offseigiven bytg) is nonuniversal.
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FIG. 6. S_caling plot ofF_(r,t)/T(L_l,ZIt) vsr/Ly,. The c_ontinu- 1=1280
ous curve is the theoretical prediction of the Gaussian closure
scheme — significant deviations are apparent. FIG. 8. Snapshots dfv 6| for a 256x 256-size system at two
times after the quench. The left column shows the dif€d], with
the equal time correlations, such as a local maximum at contour levels at 0.1, 0.2, 0.4, 0.8, and 1Hote that the lattice
~2.3 and a logarithmic divergence at smalidue to fast spacing dgfinesaunit of length, so t.he.largest gradient magniFude is
vortex annihilations. As a result, it provides a more stringent™-] The right column show§V ¢ periodically reconstructed using

test of the Gaussian-closure approximation. We find signifi—only the vortex positions, with the same contour levels. Significant

cant discrepancies, the first to be found in two-point correla—oIlfferences between.the d'r.eCt a.nq .reconStr”&@f'eld can be
. . seen away from the immediate vicinity of the vortices.
tion functions.

Further confirmation of scaling ifi(r,t) is found by ex-
ploring the time dependence of the amplitud@éL,,,t)
~t™#, see Fig. 7. The scaling form in E¢) gives u=2
(independent of logarithmsand we findu=2.0+0.1. This
is consistent with scaling. In combination with the scaling of
C(r,t) [andS(k,t)], and the consistency of the growth laws
of all measured length scales with the scaling result, we con-
clude that the quenched 2BY model dynamically scales.

In the equilibrium 2DXY model, the singulafvortex
and nonsingulafspin-wave degrees of freedom have inde-
pendent contributions to the free ener@l]. Could it be
possible for such distinct “singular” and ‘“nonsingular”
length scales to exist in phase-ordering systése®, e.g.,
[52])? If separation of vortices and spin-waves occurs, we
expect spin-wave contributions to have a characteristic scale
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FIG. 7. Log-log plot of the time-dependent prefactor of the
time-derivative correlation function. The best fit over the range FIG. 9. Direct and reconstructédé correlations,D(r,t), and
shown yields a decay tt/ with an exponenj.=1.96. Varying the  D,(r,t), respectively, normalized by vortex density for a scaling
fit range yieldspy=2.0+0.1. plot vs scaled distance. Scaling is observed after the earliest time.
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- 2 V. SUMMARY AND DISCUSSION
2.
8 We find no evidence for scaling violatioria the 2D XY
£ 0 model. All lengths, Ly, L,, and Ly, have the same
1E asymptotic form given by Ed2), albeit with different non-
F universal coefficients. Real-space correlations, structure, and
-2 E time-derivative correlations all scale as expected. Phase-
3 gradient correlations, reconstructed from the vortex locations
4 TR T T to have minimal energy and hence no spin-wave contribu-
0 05 1 15 2 25 3 35 4 tions, differed significantly from the direct correlations, indi-
In[k/ p"3)] cating that both vortex and nonsingular “spin-wave” contri-

— 2 butions are asymptotically relevant. We expect similar
= 15w o results to hold in closely related planar liquid-crystal sys-
& BEAy; tems.

e

We have also shown how Gaussian-closure approxima-
tions can be useful to sensitively explore scaling. This has
the added benefit of testing the approximation schemes. In

]
-

Q
[LASRSRANRERREEEEERE RREN:

-2 particular we find significant discrepancies with respect to
3G the measured time-derivative correlatiomér,t). More gen-
4 T T erally, we emphasize the role of sensitive nulllike tests in
0 o5 1 15 2 25 3 35 4 checking apparent scaling violations. For example, we plot
In[kp"31)1] the length scales vs the expected growth law so that linear

, ) behavior is expected if scaling is obeyed. When scaling pre-

" FltGaé% Pcr)rrold t_plﬂtsDokotourlrt]e(;—tDranksiorn:ed d"t?Ctla”g rricon'dictions are available, and in the face of transient corrections

structe correlations,D (k, ). and’ (K1), respectively. Sym- to scaling, this is preferable to the measurement of effective
bols are the same as the previous figure. exponents

One can never absolutely rule out scaling violations, if

L~t2 i.e., to have a faster decay with no logarithmic factoronly because simulations and experiments can never reach
[27]; in which case, either the direct correlations should havd— . Each length in a system that dynamically scales will
scaling violations due to the different length scale or the spirgenerally have different corrections to scaling. In quenches
waves should be asymptotically irrelevant — leaving the di-of the 2D XY model the leading correction is described well
rect and reconstructed correlations asymptotically equal dy t,, the time scale of the logarithmic factor. Since scaling
late times. As can be seen from the snapshot¥ éf in Fig.  violations seem to be rare in quenched systems, the assump-
8, the reconstruction maintains the vortex locations and ision should be that systems dynamically scale without strong
periodic. Indeed, the reconstruction providesitfieimal en-  evidence to the contrary — including the inability to perform
ergy configuration consistent with vortex positions — in 5 scaling collapse witlany length scale for eithe€(r,t) or
other words any “nonsingular” contribution is absent. In 1y ) For the 2DXY model, in contrast, we have shown

Fig. 9, the correlation function for the direct and eCon- iyt poth C and T scale with thesame length k. This
structed fields are shown as a function of the scaled distancgy ijes a self-consistent confirmation of dynamical scaling.

We first notice that both correlations scale with respect t For some systems, including this one, the scaling growth

— —12 ; ; ;
L,=p but W|tr11/2d|fferent functional for.ms.Dr has a law can be independently determined. This is invaluable
sharper knee atp~“=0.7, for example. This knee reflects : o X .
when long-lived (logarithmically decaying corrections to

the faster decay oV ¢ from the vortex core in the recon- scaling are expected. The scaling of some other lengths in
structed configurations, as is apparent in Fig. 8. The signifi: 9 P j 9 9

cant differences between the bare and reconstructed correltat‘-e P“’b'em can sometimes al_so be re_quwed for consistency.
tions in the scaling limit indicate that both vortex and “spin- [N this case the defect-separation sdgjes needed to set the

wave” contributions are relevant to the direct correlations,"orod amplitude, and hence must be asymptotically consis-
and that the separation seen in static properties does not hdfgnt With the lengthd., andL,, extracted fromS(k,t) and
in the dynamics. C(r,t), respectively.

The Porod plot of the Fourier-transformed correlations
(see Fig. 1@ further highlights the difference@ote thek
—0" intercept$. It is interesting that whilgV#)=0, the
scaling curve has a nonconserved character. This is similar to ACKNOWLEDGMENTS
correlations in globally conserved systems. We also observe
ak =2 Porod tail fork/p¥?=2, which is expected from Fou- F. Rojas thanks CONACYTMexico) and EPSRQU.K.)
rier transforming the real-space scaling ansatz,(Eg), and  (Grant No. GR/J24782 while A. D. Rutenberg thanks the
setting the amplitude of the Porod tail proportional to theNSERC, ande Fonds pour la Formation de Chercheurs et
vortex density 1/2. The Porod tail has the same amplitude 'Aide a la Recherche du Qliec We would like to thank
between the direct and reconstructed correlations, reflectinglan Bray, Rob Wickham, and Martin Zapotocky for useful
the singular structure of the vortex cores. discussions.
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