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Probing the network structure of health deficits in human aging
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We confront a network model of human aging and mortality in which nodes represent health attributes that
interact within a scale-free network topology, with observational data that use both clinical and laboratory
(preclinical) health deficits as network nodes. We find that individual health attributes exhibit a wide range of
mutual information with mortality and that, with a reconstruction of their relative connectivity, higher-ranked
nodes are more informative. Surprisingly, we find a broad and overlapping range of mutual information of
laboratory measures as compared with clinical measures. We confirm similar behavior between most-connected
and least-connected model nodes, controlled by the nearest-neighbor connectivity. Furthermore, in both model
and observational data, we find that the least-connected (laboratory) nodes are damaged earlier than the most-
connected (clinical) deficits. A mean-field theory of our network model captures and explains this phenomenon,
which results from the connectivity of nodes and of their connected neighbors. We find that other network
topologies, including random, small-world, and assortative scale-free networks, exhibit qualitatively different
behavior. Our disassortative scale-free network model behaves consistently with our expanded phenomenology
observed in human aging and so is a useful tool to explore mechanisms of and to develop predictive measures
for human aging and mortality.
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I. INTRODUCTION

Accumulation of damage causes organismal aging [1].
Even in model organisms, with controlled environment and
genotype, there are large individual variations in life span and
in the phenotypes of aging [2]. While many mechanisms cause
specific cellular damage [3], no single factor fully controls
the process of aging. This suggests that the aging process is
stochastic and results from a variety of damage mechanisms.

The variability of individual damage accumulation results
in differing trajectories of individual health and in differing
individual life spans and is a fundamental aspect of individual
aging. A simple method of quantifying this individual damage
is the frailty index (FI) [4,5]. The FI is the proportion of
age-related health issues (deficits) that a person has out of a
collection of health attributes. The FI is used as a quantitative
tool in understanding the health of individuals as they age.
There have been hundreds of papers using an FI based on self-
report or clinical data, both for humans [6] and for animals [7].
Individuals typically accumulate deficits as they age and so
the FI increases with age across a population. The FI captures
the heterogeneity in individual health and is predictive of both
mortality and other health outcomes [8].
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In previous work we developed a stochastic network model
of aging with damage accumulation [9,10]. Each individual
is modeled as a network of interacting nodes that represent
health attributes. Both the nodes and their connections are
idealized and do not specify particular health aspects or
mechanisms. Connections (links) between neighboring nodes
in the network can be interpreted as influence between sep-
arate physiological systems. In our model, damage facilitates
subsequent damage of connected nodes. We do not specify the
biological mechanisms that cause damage, only that damage
rates depend on the proportion of damaged neighbors. Dam-
age promotes more damage and lack of damage facilitates
repair. Rather than model the specific biological mechanisms
of aging, we model how damage to components of generic
physiological systems can accumulate and propagate through-
out an organism, ending with death.

Even though our model includes no explicit age depen-
dence in damage rates or mortality, it captures Gompertz’s
law of mortality [11], the average rate of FI accumulation
[4,12], and the broadening of FI distributions with age [13,14].
By including a false-negative attribution error (i.e., a finite
sensitivity) [10], we can also explain an empirical maximum
of observed FI values, typically between 0.6 and 0.8 [5,12–
16]. This shows that age-dependent programming of either
mortality or damage rates is not necessary to explain these
features [1].

We had chosen the Barabási-Albert (BA) preferen-
tial attachment algorithm [17] to generate our scale-free
network, both due to the simplicity of the BA algorithm and
due to the numerous examples of these scale-free networks
in biological systems [18]. While we had constrained the
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scale-free network parameters with the available phenomenol-
ogy, we did not examine whether other common network
structures could also recover the same phenomenology. More
specifically, we did not identify which observable behavior
sensitively depends on the network structure.

Ideally, we could directly reconstruct the network from
available data. However, the direct assessment of node con-
nectivity from observational data is a challenging and gener-
ally unsolved problem. Nevertheless, we show here that we
can reliably reconstruct the relative connectivity (i.e., the rank
order) of high-degree nodes in both model and large-cohort
observational data by measuring the mutual dependence be-
tween pairs of nodes. This reconstruction allows us to qual-
itatively confirm the relationship between the connectivity
of nodes and how informative they are about mortality [10].
Specifically, we demonstrate that a network with a wide range
of node connectivities (such as a scale-free network) is needed
to describe the observational data.

Recently, the FI approach was extended to laboratory [19]
and biomarker data [20] and used in clinical [21] and popu-
lation settings [22]. Two different FIs have been constructed
to measure different types of damage: Fclin, with clinically
evaluated or self-reported data, and Flab, with laboratory or
biomarker data. Clinical deficits are typically based on dis-
abilities, loss of function, or diagnosis of disease and they
measure clinically observable damage that typically occurs
late in life. Laboratory deficits or biomarkers use the results
of laboratory tests (e.g., blood tests or vital signs) that are
binarized using standard reference ranges [23]. Since frailty
indices based on laboratory tests measure preclinical damage,
they are distinct from those based on clinical and/or self-report
data [19,22].

Even though they measure very different types of damage,
both FIs are similarly associated with mortality [19,24]. Ear-
lier observational studies have found (average) 〈Flab〉 larger
than 〈Fclin〉 [19,20,24]. However, a study of older long-term
care patients has found 〈Flab〉 less than 〈Fclin〉 [25]. While dif-
ferences between studies could be attributed to classification
differences, a large single study including ages from 20 to 85
from the National Health and Nutrition Examination Survey
(NHANES) [22] also found that 〈Flab〉 was higher than 〈Fclin〉
at earlier ages, but below at later ages.

The observed age-dependent relationship (or age structure)
between Flab and Fclin challenges us to examine whether
network properties can determine similar age structure in
model data. We aim to determine what qualitative net-
work features are necessary to explain age structure. Our
working hypothesis is that low-degree nodes should corre-
spond to Flab, just as high-degree nodes correspond to Fclin

[9,10].
Complex networks have structural features beyond the

degree distribution. For example, nearest-neighbor degree cor-
relations describe how connections are made between specific
nodes of different degree [26]. Accordingly, we consider
networks with three types of degree correlations: assortative,
disassortative, and neutral [26,27]. Networks with assortative
correlations tend to connect like-degree nodes, those with
disassortative correlations tend to connect unlike degrees,
and those with neutral correlations are random. We probe
and understand the internal structure of these networks by

examining Fhigh and Flow, i.e., damage to high-degree nodes
and damage to low-degree nodes.

Since networks have many properties other than degree
distribution and nearest-neighbor degree correlations, we have
also constructed a mean-field theory that only has these
properties. With it we can better connect specific network
properties with qualitatively observed phenomenon, within
the context of our network model.

We show how network properties of degree distribution
and degree correlations are essential for our model to recover
results from observational data. Doing so, we can explain
how damage propagates through our network and what makes
nodes informative of mortality. This allows us to understand
the differences between Flow and Fhigh or between preclinical
and clinical damage in observational health data.

II. METHODS

A. Stochastic model

Our model was previously presented [10]. Individuals are
represented as a network consisting of N nodes, where each
node i ∈ {1, 2, . . . , N} can take on binary values di = 0, 1 for
healthy or damaged, respectively. Connections are undirected
and all nodes are undamaged at time t = 0.

A stochastic process transitions between healthy and dam-
aged (di = 0, 1) states. Healthy nodes are damaged with rate
�+ = �0 exp(fiγ+) and damaged nodes are repaired with
rate �− = (�0/R) exp(−fiγ−). These rates depend on the
local frailty fi = ∑

j∈N (i) dj/ki , which is the proportion of
damaged neighbors of node i. This fi quantifies local damage
within the network. Transitions between the damaged and
healthy states of nodes are implemented exactly using a
stochastic simulation algorithm [28,29]. For each step, the
algorithm chooses a transition to perform from all of the
possible transitions. The probability of choosing a particular
transition is determined by its transition rate, and after the
transition is performed time is incremented by sampling a
time increment from an exponential waiting-time distribu-
tion with mean rate given by the transition rate. Individual
mortality occurs when the two highest degree nodes are both
damaged.

We generate our default network topology using a linearly
shifted preferential attachment algorithm [30,31], which is
a generalization of the original Barabási-Albert algorithm
[17]. This generates a scale-free network P (k) ∼ k−α , where
the exponent α and average degree 〈k〉 can be tuned. (The
minimum degree varies as kmin = 〈k〉/2.) This network is
highly heterogeneous in both degree ki and nearest-neighbor
(NN) degree ki,NN = ∑

j∈N (i) kj/ki .
Since we are concerned with the properties of individual

nodes and groups of nodes, we use the same randomly gen-
erated network for all individuals. As a result, connections
between any two nodes are the same for every individual.
To ensure that our randomly generated network is generic,
we then redo all of our analysis for ten different randomly
generated networks. All of these networks behave qualita-
tively the same and so we present results averaged over them.
Previously [10], we generated a distinct network realization
for each individual.
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We have used observational data for mortality rate and
FI vs age to fine-tune the network parameters [9,10]. A sys-
tematic exploration of parameters was done in previous work
[9,10]. Most of our parametrization (N = 10 000, α = 2.27,
〈k〉 = 4, and γ− = 6.5) is the same as reported previously
[10]. However, three parameters (�0 = 0.001 83/yr, γ+ =
7.5, and R = 3) have been adjusted because we now disal-
low multiple connections between pairs of nodes during our
network generation. This simplifies analysis and adjustment
of the network topology, but would also affect mortality rates
(see, e.g., Fig. 15 below) without the parameter adjustment.
Other network topologies (see Sec. III D) also use this default
parametrization unless otherwise noted.

Typically, binary deficits have a finite sensitivity [32],
while our model gives us exact knowledge of when a node
damages. We have modeled this finite sensitivity by applying
nonzero false-negative attribution errors to our raw model FI
[10]. This has no effect on the dynamics or on mortality, but
does affect the FI. For any raw FI f0 = ∑

i di/n from n nodes,
there are n0 = f0n damaged nodes. With a false-negative rate
of q, nq of these are overturned, where nq is individually sam-

pled from a binomial distribution p(nq ; n0, 1 − q ) = (n0
nq

)(1 −
q )nq qn0−nq . We use f = nq/n as the corrected individual FI.
Since our model f0 tends to reach the arithmetic maximum of
1 at old ages, this effectively gives a maximum observed FI of
〈fmax〉 = 1 − q [10]. We use q = 0.4 throughout.

B. Observational data analysis

Observational data are typically censored, meaning that
the study ended or an individual dropped out before their
death occurred, leaving no specific death age. To avoid this
problem, we use a binary mortality outcome, e.g., M = 0
if an individual is alive within 5 yr of follow-up or M = 1
otherwise. We use 5-yr outcomes throughout for observational
data unless otherwise specified. We adapt this approach in our
analysis of mutual information [33,34]. Our entropy calcula-
tions will use binary entropy S(M|t ) = −p(0|t ) log p(0|t ) −
p(1|t ) log p(1|t ), which we use to calculate information
I (M; Di |t ) = S(M|t ) − S(M|Di, t ). See also Ref. [35] for
other varieties of information analysis for observational data.

We compare our information theory results to a more
standard survival analysis with hazard ratios [36]. The hazard
ratio is the ratio of instantaneous event rates for two values
of an explanatory variable, e.g., with or without a deficit. A
larger hazard ratio means a lower likelihood of surviving with
the deficit than without. Hazard ratios are semiparametric,
since they extract the effects of variables on mortality rate
from a phenomenological mortality model. We use the Cox
proportional hazards model [37], which assumes exponential
dependence of mortality rates. We show below that these
survival analysis techniques are consistent with our nonpara-
metric mutual information measures.

C. High-k network reconstruction

To reconstruct network connections from observed states
of nodes, we use the state of each deficit (node) at a given
age t (or narrow range of ages in observational data) for each
individual in the sample and calculate the mutual information

between individual deficits, I (Di ; Dj |t ) [38,39]. Connections
in the model create correlations between nodes, so a large
I (Di ; Dj |t ) could indicate a connection. We use data where
individuals are the same age (or ±5 yr in observational data),
so time is not a confounding variable. Nevertheless, deter-
mining whether a given connection exists or not requires a
threshold on I (Di ; Dj |t ). If we took this route, we would only
assign a connection between nodes if the mutual information
is above this threshold. However, we have no practical way
of determining such a threshold, though attempts have been
made in the past [40].

In preliminary tests with our model we have found that
matching the reconstructed average degree with the exact
average degree is a reliable way of determining a threshold
(data not shown), but we still have no way of determining the
average degree from observational data. Instead, we use a sim-
ple parameter-free method adapted from work on gene coex-
pression networks [41]. We construct weighted networks, with
the mutual information between pairs of nodes as the strength
or weight of the connections. We then calculate a “recon-
structed” degree by adding the information for each possible
connection to the node in the network, k̂i ≡ ∑

j �=i I (Di ; Dj |t )
[42]. For nodes that are not connected, I (Di ; Dj |t ) ≈ 0, while
I (Di ; Dj |t ) is expected to be large for connected nodes. While
we cannot reconstruct the actual network, we can reconstruct
the rank-order degree of high-k nodes, since we find that k̂ is
roughly monotonic with the actual degree k for high-k nodes.

D. Mean-field theory of network dynamics

Here we present a mean-field theory of our network model
to understand the mechanisms underlying our model results.
Our mean-field theory (MFT) is based on work on epidemic
processes in complex networks by Pastor-Satorras et al. [43]
together with ideas from Gleeson [44] that we use to include
mortality dynamics.

By MFT we mean a set of deterministic dynamical equa-
tions for damage probabilities of network nodes, including
mortality nodes. Here we retain the full degree distribution
P (k) and degree correlations P (k′|k) of our stochastic net-
work model. This allows us to identify what model behavior is
controlled by the degree distribution and degree correlations.
(A simpler MFT, with all nodes having the same degree,
has been published [10].) With a degree distribution we then
solve (see below) thousands of coupled ordinary differential
equations with standard numerical integrators.

We average the damaged probabilities p(di = 1, t ) and
the undamaged probabilities p(di = 0, t ), conditioned on the
damage of the mortality nodes, over all nodes of the same
degree k:

pk,dm1 ,dm2
(t ) ≡

∑
deg(i)=k

p
(
di = 1, dm1 , dm2 , t

)
/NP (k),

qk,dm1 ,dm2
(t ) ≡

∑
deg(i)=k

p
(
di = 0, dm1 , dm2 , t

)
/NP (k),

where the mortality states are indicated by dm1 , dm2 ∈ {0, 1},
N is the number of nodes, and P (k) is the degree distribution.
The resulting joint probabilities are pk,dm1 ,dm2

and qk,dm1 ,dm2
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for damaged and undamaged nodes, respectively. These joint
probabilities satisfy

∑
dm1 ,dm2

(
pk,dm1 ,dm2

+ qk,dm1 ,dm2

) = 1, (1)

pdm1 ,dm2
= pk,dm1 ,dm2

+ qk,dm1 ,dm2
, (2)

pk|dm1 ,dm2
= pk,dm1 ,dm2

/pdm1 ,dm2
. (3)

Equation (1) is a normalization condition, Eq. (2) complete-
ness, and Eq. (3) Bayes’ theorem for conditional probabilities.
From our mortality rule of dm1 , dm2 = 1, the probability of
mortality is pdead = pk,1,1 + qk,1,1 for any k.

The probability of a neighbor of a node of degree k being
damaged (which is its local frailty f ) given a particular
mortality state is

fk|dm1 ,dm2
(t ) =

∑
k′

P (k′|k)pk′|dm1 ,dm2
, (4)

where P (k′|k) is the conditional degree distribution, or
nearest-neighbor degree distribution. In addition, P (k′|k) de-

scribes the structure of connections in the network and can be
varied independently of the degree distribution P (k).

Writing exact master equations for N nodes is impractical
since there would be 2N distinct states to track, with even
more distinct transition rates. As an enormous simplifica-
tion, we use averaged damage and repair rates of nodes of
a given connectivity k. This is our key mean-field simpli-
fication. To do this we approximate 〈didj 〉 = 〈di〉〈dj 〉 for
all nodes and approximate the number of damaged neigh-
bors by a binomial distribution nd ∼ B(nd ; fk|dm1 ,dm2

, k) =
( k

nd
)f nd

k|dm1 ,dm2
(1 − fk|dm1 ,dm2

)k−nd where the average proportion
of damaged neighbors will be fk|dm1 ,dm2

. Using Eq. (4), we can
then calculate our MFT damage and repair rates〈

�±
(
fk|dm1 ,dm2

)〉 = �0,±〈exp (γ±nd/k)〉
= �0,±

(
fk|dm1 ,dm2

e±γ±/k + 1 − fk|dm1 ,dm2

)k
. (5)

The node degree is explicit in Eq. (5), while the degree
correlation is included through the average local damage in
Eq. (4).

Using these averaged damage and repair rates as transition
probabilities, we can write a master equation for nodes with
connectivity k = kmin, . . . , km2 − 1 and given the global state
of the mortality nodes:

ṗk,0,0(t ) = qk,0,0〈�+(fk )〉 − pk,0,0
[〈
�+

(
fm1

)〉 + 〈
�+

(
fm2

)〉] − pk,0,0〈�−(fk )〉 + pk,1,0
〈
�−

(
fm1

)〉 + pk,0,1
〈
�−

(
fm2

)〉
,

q̇k,0,0(t ) = −qk,0,0〈�+(fk )〉 − qk,0,0
[〈
�+

(
fm1

)〉 + 〈
�+

(
fm2

)〉] + pk,0,0〈�−(fk )〉 + qk,1,0
〈
�−

(
fm1

)〉 + qk,0,1
〈
�−

(
fm2

)〉
,

ṗk,1,0(t ) = qk,1,0〈�+(fk )〉 − pk,1,0
〈
�+

(
fm2

)〉 + pk,0,0
〈
�+

(
fm1

)〉 − pk,1,0〈�−(fk )〉 − pk,1,0
〈
�−

(
fm1

)〉
,

q̇k,1,0(t ) = −qk,1,0〈�+(fk )〉 − qk,1,0
〈
�+

(
fm2

)〉 + qk,0,0
〈
�+

(
fm1

)〉 + qk,1,0〈�−(fk )〉 − qk,1,0
〈
�−

(
fm1

)〉
,

ṗk,0,1(t ) = qk,0,1〈�+(fk )〉 − pk,0,1
〈
�+

(
fm1

)〉 + pk,0,0
〈
�+

(
fm2

)〉 − pk,0,1〈�−(fk )〉 − pk,0,1
〈
�−

(
fm2

)〉
,

q̇k,0,1(t ) = −qk,0,1〈�+(fk )〉 − qk,0,1
〈
�+

(
fm1

)〉 + qk,0,0
〈
�+

(
fm2

)〉 + pk,0,1〈�−(fk )〉 − qk,0,1
〈
�−

(
fm2

)〉
,

ṗk,1,1(t ) = pk,1,0
〈
�+

(
fm2

)〉 + pk,0,1
〈
�+

(
fm1

)〉
,

q̇k,1,1(t ) = qk,1,0
〈
�+

(
fm2

)〉 + qk,0,1
〈
�+

(
fm1

)〉
. (6)

In these equations we have not shown the mortality state
indices of fk for readability, but they are the same as the
associated p or q factors. We have also defined fm1 and
fm2 as the local frailties of the first and second mortality
nodes, respectively. We have eight equations for each distinct
degree k. The last two equations determine the mortality rate
ṗk,1,1 + q̇k,1,1.

The mean-field model couples the dynamics of the lowest
degree (k = 2) with all degrees up to the two highest (mor-
tality nodes). Solving the equations requires us to explicitly
determine the two mortality node degrees. While approximate
calculations of the maximum degree of scale-free networks
are available [45], we need the two highest degrees. We
use km1 = 885 and km2 = 768, based on the averages from
simulations of the network. Similarly, we use km1 = 14 and
km2 = 13 for Erdős-Rényi (ER) random networks and km1 = 7
and km2 = 6 for Watts-Strogatz (WS) small-world networks.
Qualitatively, our MFT results do not depend on these mortal-
ity node degrees, as long as they are sufficiently large.

Our default network uses a linearly shifted preferential-
attachment model, which has explicit functional forms for
the degree distribution P (k) and the nearest-neighbor degree
distribution P (k′|k) as N → ∞ [31]. For all networks, we
numerically solve Eq. (6) for the probabilities pk,dm1 ,dm2

(t ) and
qk,dm1 ,dm2

(t ). These then allow us to calculate the average FI

〈F (t )〉 =
∑khigh

k=klow
P (k)pk|alive∑khigh

k=klow
P (k)

,

pk|alive ≡ pk,0,0 + pk,0,1 + pk,1,0

pk,0,0 + pk,0,1 + pk,1,0 + qk,0,0 + qk,0,1 + qk,1,0

(7)

so that the average is over the surviving individuals. Our
averaged damage rates overestimate the true values, so for the
same parametrization mortality occurs on a shorter timescale
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in the MFT. This is because rapidly damaging nodes drop
out of the full model once they are damaged, but continue
to contribute to the average damage rates in the mean-field
model through Eq. (5). Because of this, when plotting MFT
results we scale time by tscale, the time at which every node is
damaged (pk = 1).

III. RESULTS

We will focus on measures that can be compared between
model and observational data or that provide insight into the
network structure of organismal aging. We start with obser-
vational data, to expand the observed aging phenomenology.
Then we explore how our network model behaves, with a
focus on how network properties determine the qualitative
behavior of the model.

A. Observational data

Dauntingly, we have three challenges for assessing net-
work properties from observational data: Human studies are
small (typically with �104 individuals), so results will be
noisy; different studies will have quantitative differences due
to cohort differences and choices of measured health at-
tributes; and we have no robust way of reconstructing net-
works from observed deficits, so the absolute connectivity
of health attributes is unknown. We face these challenges by
focusing on qualitatively robust behavior from larger obser-
vational studies; this will also help us to confront our results
with the behavior of our generic network model.

From the NHANES (see [46]), the 2003–2004 and 2005–
2006 cohorts were combined, with up to 5 yr of mortality
reporting (one measurement of age and FI with either age of
death or last age known to be still alive). Laboratory data were
available for 9052 individuals and clinical data on 10 004,
aged 20+ yr. Thresholds used to binarize laboratory deficits
are found in Ref. [22]. From the Canadian Study of Health
and Aging (CSHA) (see [47]), 5-yr mortality reporting were
obtained from 1996 to 1997. Laboratory data were available
for 1013 individuals and clinical data for 8547, aged 65+
years. Thresholds used to binarize laboratory deficits are
found in Ref. [19]. By approaching both the NHANES and
CSHA studies with the same approaches, we can identify
qualitatively robust features of both.

Figure 1 shows the average FI vs age for Flab in red and
Fclin in blue for the NHANES and in the inset for the CSHA.
In both studies laboratory deficits accumulate earlier than
clinical deficits. A crossover appears in the NHANES data
around age 55, after which clinical deficits are more damaged
than laboratory deficits. A similar crossover does not appear
to happen in the CSHA data.

Figures 2 and 3 show deficits rank ordered in infor-
mation I (M; Di |t ) for the NHANES and CSHA, respec-
tively. These are information “fingerprints.” Red points
correspond to laboratory deficits and blue to clinical
deficits, as indicated. Both types of deficits have similar
magnitudes of information, although clinical deficits are
typically more informative. The comparable magnitudes of
mutual information for the majority of individual deficits
between laboratory and clinical FIs are consistent with earlier

FIG. 1. Average FI vs age t with 〈Flab〉 (red squares) and 〈Fclin〉
(blue circles) from the NHANES data set. The inset shows the same
plot for the CSHA data set. Error bars show the standard error of
the mean. All individuals used in this plot have both Fclin and Flab

measured.

analysis that found a similar association between labora-
tory and clinical FIs with mortality using survival analysis
[19,22,24].

Insets in Figs. 2 and 3 show the corresponding hazard
ratio (HR) for the deficit found from a Cox proportional
hazards model regression, with the deficit value and age
used as covariates. This semiparametric analysis is often
done with medical data [48]. The HR tends to increase
as the rank-ordered information increases, indicating that
our mutual-information approach is capturing similar effects.
Nevertheless, we prefer mutual information because it is
nonparametric (not model dependent) and so relies on fewer
assumptions.

Our deficit-level analysis highlights the great variability
of mutual information (and HR ratios) between individual
deficits. We have shown that laboratory and clinical deficits
have a range of mutual information. We further note that the
top five to seven most informative clinical deficits in both the
NHANES and CSHA data sets measure functional disabilities
or dysfunction [49]. We find that these high-level deficits
are the most informative of mortality and more informative
than any of the laboratory deficits. From this we hypothesize
that highly informative clinical deficits will also be highly
connected.

We have been able to partially reconstruct the network
structure of clinical measures, as detailed in Sec. II C. In
Fig. 4 we have validated this approach with the top 32 most-
connected model nodes. We use 10 000 individuals for our
validation, approximately the same number of people we
have available in the observational studies. We know that
our model information tends to increase with degree for the
high-degree nodes (see [10] and also Fig. 10 below). Figure 4
shows that information also increases with the reconstructed
degree k̂, as expected for a good reconstruction. The inset
showing k vs k̂ indeed shows that the reconstructed degree is
approximately monotonic with the exact degree, especially at
higher k.
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FIG. 2. Rank-ordered deficits in terms of information
I (M; Di |t ∈ [75, 85]) for the NHANES data set. Red points
are laboratory deficits and blue points are clinical deficits. Error
bars are standard errors found from bootstrap resampling. Small
numbers next to the points indicate the number of individuals that
were available in the data for the corresponding deficit. Insets show
the corresponding hazard ratios for the deficits found from a Cox
proportional hazards model regression, with the deficit and age used
as covariates. The error bars show standard errors and the solid line
shows a linear regression through these points with the standard
error in slope and intercept shown in a lighter color.

This means the reconstructed degree should provide a
reasonable rank order in connectivity for observational data.
Nevertheless, low-degree nodes are not reliably rank ordered.
Accordingly, we only attempt to reconstruct clinical k̂ with
this approach.

In Fig. 5 we plot information with respect to mortal-
ity I (M; Di |t ∈ [75, 85]) for each deficit, where deficits
are rank ordered in terms of reconstructed degree k̂. In-
formation increases with reconstructed degree for both
the NHANES and CSHA clinical data. This shows that
high information deficits correspond to high connectivity
in the observational data. Also, nearly all of the func-
tional disabilities intuitively hypothesized to have a high

FIG. 3. Rank-ordered deficits in terms of information
I (M; Di |t ∈ [75, 85]) for the CSHA data set. Red points are
laboratory deficits and blue points are clinical deficits. Error bars are
standard errors found from bootstrap resampling. Small numbers
next to the points indicate the number of individuals that were
available in the data for the corresponding deficit. Insets show
the corresponding hazard ratios for the deficits found from a Cox
proportional hazards model regression, with the deficit and age used
as covariates. The error bars show standard errors and the solid line
shows a linear regression through these points with the standard
error in slope and intercept shown in a lighter color.

connectivity are also found to have a large reconstructed
degree.

B. Model age structure

We saw, in Fig. 1, that preclinical (laboratory) damage ac-
cumulates before clinical damage in observational data. This
is a qualitatively robust observation, seen in both NHANES
and CSHA observational data. We also observed, in Fig. 5,
that (in terms of rank order) highly connected clinical deficits
were more informative than less-connected deficits. We ex-
pect that health attributes assessed by laboratory tests are less
connected than the high-level functional attributes assessed
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FIG. 4. Information I (A; Di |t = 80) vs rank-ordered deficits us-
ing reconstructed degree k̂i , for our computational model. The top
32 most-connected nodes are reconstructed with 10 000 individuals.
The smaller (blue circles) points show individual nodes, the larger
points show a binned average, and error bars are the standard error of
the mean within each bin. The inset (black squares) shows the exact
degree k vs the reconstructed degree k̂.

clinically. We hypothesize that Flab and Fclin should behave
qualitatively like collections of low- or high-degree nodes,
respectively, within our network model of aging.

We construct two distinct FIs to capture the difference
between well-connected hub nodes and poorly connected
peripheral nodes. We measure low-degree damage by con-
structing Flow = ∑

i di/n from a random selection of n = 32
nodes all with k = kmin = 2. Similarly, we measure high-
degree damage with Fhigh from the top 32 most-connected
nodes (excluding the two most-connected nodes, which are
the mortality nodes).

Figure 6 shows the cumulative average degree of damaged
nodes 〈kdam〉 = 〈∑N

i=0 kidi/
∑N

i=0 di〉 vs age t . Error bars rep-
resent the standard deviation between ten different randomly
generated networks. They are each comparable to or smaller
than the point size, indicating that the age structure represents
the network topology rather than a single network realization.

For a uniform network or for damage rates independent
of the degree of a node, we would expect 〈kdam〉 = 〈k〉 for
all ages t . However, we see that the average degree of
damaged deficits starts at 〈k〉, with an initial decrease until
around age 25 and then an increase back to 〈k〉, imply-
ing that damage does not uniformly propagate through the
network.

Initially damage is purely random, so 〈kdam(0)〉 = 〈k〉.
Nodes with degree ki < 〈k〉 are being damaged when
〈kdam〉/〈k〉 decreases from 1 and nodes of degree ki > 〈k〉 are
being damaged when 〈kdam〉/〈k〉 increases towards 1.

The inset of Fig. 6 shows the average FI vs age for
Flow and Fhigh. We see 〈Flow〉 initially larger than 〈Fhigh〉.
Eventually with age, 〈Fhigh〉 increases to match 〈Flow〉 and
even slightly exceed it at very old ages. Thus, low-k nodes
behave similarly to laboratory deficits and high-k nodes be-
have similarly to clinical deficits in observational health data.
Low-k nodes and laboratory measures both are damaged early

FIG. 5. Rank-ordered clinical deficits in terms of reconstructed
degree k̂ vs information with respect to mortality I (M; Di |t ∈
[75, 85]) for the NHANES and CSHA data sets. The reconstruction
algorithm is detailed in Sec. II C. Error bars are standard errors found
from bootstrap resampling.

and high-k nodes and clinical measures both are damaged
late.

We have not tuned our model parametrization to obtain this
age structure of damage in the network model. Indeed, for
other parameter choices we see qualitatively similar behavior
(data not shown) for the scale-free networks that we have been
using. To better understand this age structure we consider
the effects of network connectivity within our mean-field
theory.

In our mean-field theory, we find that our averaged damage
rates explicitly depend on k in Eq. (5). This is shown in
Fig. 7; these mean-field damage rates increase with smaller
k at a given f . This results from Jensen’s inequality, since the
damage rate is convex in the local frailty f and the lower-
degree nodes will have a broader distribution of local frailty
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FIG. 6. Average degree of damaged model deficits 〈kdam(t )〉,
scaled by the average degree of the network 〈k〉, vs time t . Error
bars, barely visible at low t , represent the standard deviation be-
tween randomly generated networks. As indicated, at earlier times
low-connectivity nodes are preferentially damaged, while at later
times higher-connectivity nodes are preferentially damaged. The
inset shows the average damage of low-connectivity nodes 〈Flow〉
(red squares) and of high-connectivity nodes 〈Fhigh〉 (blue circles)
vs age.

for the same global frailty. This implies that low-k nodes
should be damaged more frequently until they are exhausted
and Flow saturates.

We can confirm this with the full MFT results. We can
determine the FI from Eq. (7) and calculate both Fhigh and
Flow. The klow and khigh determine the nodes included in
the FI. For Fhigh, we choose khigh = km2 − 1 and klow, so

N
∑khigh

k=klow
P (k) = n 
 32 for the smallest possible klow (32

is the number of FI nodes typically used in our model and
observational studies). For Flow, we choose klow = kmin and

FIG. 7. Average mean-field damage rates 〈�+〉/�0 for nodes of a
given degree k (as indicated) vs the local frailty of these nodes f , as
given by Eq. (5). Low-connectivity nodes exhibit significantly higher
damage rates at intermediate values of f .

FIG. 8. From our mean-field calculation in Sec. II D, we show
the average degree of damaged deficits 〈kdam〉 scaled by the average
network degree 〈k〉 vs time scaled by the time when the network
becomes fully damaged, t/tscale. The inset shows the average dam-
age of high-connectivity nodes 〈Fhigh〉 in blue and low-connectivity
nodes 〈Flow〉 in red vs the scaled time.

the smallest khigh so that n 
 32. We also calculate

〈kdam(t )〉 =
∑khigh

k=klow
kP (k)pk|alive∑khigh

k=klow
P (k)pk|alive

, (8)

which is the cumulative average degree of damaged nodes as
was done for our computational results.

In Fig. 8 the age structure from the mean-field calculation
shows the same early damage of low-k nodes shown in Fig. 6
and (in the inset) the more-rapid growth of Flow compared to
Fhigh at earlier times. Our mean-field calculation also shows a
more-rapid growth of Fhigh compared to Flow at later times, as
shown in the inset of Fig. 8. This largely is explained by the
saturation of Flow.

We conclude that the age structure seen observationally
and in our network model can be explained by the degree
distribution and neighbor-degree correlations of our MFT.
This motivates us to investigate how node degree and neighbor
degree affect mortality within the context of our network
model.

C. Model node information

Figure 9 shows the mutual information between death age
and individual nodes I (A; Di ) for our model. Red points
are a random selection of 100 low-connectivity nodes, all
with k = kmin = 2, and the blue points are the top 100 most-
connected nodes (excluding the two mortality nodes). For
each selection, we have rank ordered the nodes in terms of
mutual information. The mutual information for both high-
and low-connectivity nodes is comparable. This is surprising
since previous work showed a monotonic increase of the
average information with connectivity [10]. However, that
work used a different network for each individual, so network
properties other than the average degree were lost by pooling
nodes of the same degree.

Without parameter tuning, we obtain striking qualitative
agreement of the magnitude of the mutual information with
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FIG. 9. Mutual information of selected model deficits
I (A; Di |t = 80) at age 80 yr, averaged over ten randomly
generated networks with 107 individuals each and rank ordered. Red
points are low-k deficits and blue points are high-k deficits.

mortality for both model and observational data (see Figs. 2
and 3). We also obtain an overlap of magnitudes of the
mutual information of low-degree and high-degree nodes that
is similar to that seen between preclinical and clinical deficits.
Since we know the model network connectivity, we can now
examine what network properties cause this behavior for our
model.

In Fig. 10 we show the spectrum of mutual information
between death age and individual nodes I (A; Di |t = 80). We
use individuals at age t = 80 yr, where the mutual information
is close to maximal [10]. We use the same network for every
individual so that we do not lose the properties of the network
between individuals. For the most-connected nodes, in blue,
we plot mutual information vs the connectivity of the nodes.
Here we see the monotonic trend of mutual information vs
connectivity, though there is significant variation for indi-
vidual nodes. For the least-connected nodes, in red, all of
the nodes have k = 2. Instead of connectivity, we consider
the nearest-neighbor degree ki,NN = ∑

j∈N (i) kj/ki , i.e., the
connectivity of the neighbors of a node. With respect to kNN,
we see a similar monotonic increase of the mutual information
for k = 2 nodes.

Neighbor connectivity kNN is predictive of mortality for
minimally connected nodes. We hypothesize that this is be-
cause the neighbor connectivity affects when peripheral (k =
2) nodes are damaged, i.e., that peripheral nodes with low kNN

are damaged earlier than those with large kNN.
In the inset of Fig. 11 we confirm that high-kNN, k = 2

nodes are damaged later. This allows high-kNN nodes to be
informative of mortality because they are diagnostic of a more
highly damaged network. From Fig. 11 we see that there is a
large range of times for which lower-k nodes are damaged.

NN

FIG. 10. Model information spectra I (A; Di |t = 80) vs degree
ki for the top 100 most-connected nodes in blue or vs ki,NN for
a random selection of 100 peripheral nodes all with k = kmin = 2.
Points show a sample of a single network, line shows an average
over ten randomly generated networks and the random choice of 100
nodes with k = 2, and the shaded error region shows the standard
deviation over the random networks.

Nevertheless, on average, the high-kNN nodes at k = 2 are
damaged before high-k nodes even though (see Fig. 10) they
can be similarly informative.

FIG. 11. Average time of damage 〈tdam〉 vs degree k for all
nonmortality nodes in the network. The inset shows 〈tdam〉 for k = 2
nodes vs NN degree kNN. Nodes are binned based on k. The solid
colored bars represent the entire range of average damage times
observed for individual nodes within a bin, while the horizontal black
lines indicate the average over the bin. All results are averaged for ten
randomly generated networks.
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FIG. 12. Average NN degree 〈kNN(k)〉 vs degree k for a dis-
assortative network (default network) (purple circles), an assorta-
tive network created by reshuffling the links (green squares) [51],
a Erdős-Rényi random network (yellow triangles), and a Watts-
Strogatz small-world network (blue triangles). Note that 〈kNN(k)〉 is
grouped into bins of powers of 2 and averaged within the bins for the
scale-free networks. A bin for each degree is used for the ER random
and WS small-world networks.

D. Model network structure

We have seen that our network model of aging is able
to capture detailed behavior of laboratory and clinical FIs
such as the larger damage rates for low-k nodes at the same
time as the surprising informativeness of some low-k nodes.
The network is an important aspect of our model and so far
we have assumed that it is a preferential attachment scale-free
network [17,30,31]. In this section we explore the qualitative
behavior of different network topologies.

Our network model has predominantly disassortative cor-
relations (due to the scale-free exponent α < 3 [50] ), mean-
ing that low-k nodes tend to connect to high-k nodes and that
the average NN degree decreases with degree [27]. We see this
in Fig. 12, where we plot the average NN degree 〈kNN(k)〉 as a
function of degree for our network. The purple points indicate
our preferential attachment model network and we see that the
average NN degree is inversely related to the degree.

The green curve shows a rewired assortative network [27]
made by preserving the degrees of the original network but
swapping links. To do this we use the method of Xulvi-Brunet
and Sokolov, using N2 rewiring iterations with a parameter
p = 0.99 [51]. By modifying the NN degrees of low-degree
nodes, we can investigate whether kNN causes or is just
correlated with informative low-k nodes. Note that we use
only the largest connected component of the rewired network,
with 〈N〉 = 9989 nodes over ten network realizations.

The yellow triangles in Fig. 12 show an ER random net-
work. A random network is created by starting with N nodes
and randomly connecting each pair of nodes with probability
pattach = 〈k〉/(N − 1) [26]. This results in a (peaked) bino-
mial degree distribution and completely uncorrelated connec-
tions where kNN = 〈k2〉/〈k〉, which is independent of individ-
ual node degree. As before, we only use the largest connected
component, with 〈N〉 = 9805 nodes over ten network realiza-
tions. The ER network also allows us to explore whether the

FIG. 13. Rank-ordered information I (A; Di |t = 80) for the dif-
ferent networks, as indicated. The top 100 most-connected nodes in
the network are in blue circles and 100 randomly selected nodes
of the lowest degrees are in red squares. Results for each different
network topology are averaged over ten randomly generated network
realizations.

heavy tail of the scale-free degree distribution is required to
recover our observational results.

The light blue triangles in Fig. 12 show a WS small-
world network [52]. This network starts with a uniform ring
network with ki = 〈k〉 for all nodes and randomly rewires
each link with probability prewire to another randomly selected
node. We use prewire = 0.05 to get the effects of both high
clustering (i.e., links between neighbors of nodes) and short
average path lengths between arbitrary pairs of nodes [26].
This network has a narrowly peaked degree distribution, with
a rapidly decaying exponential tail. The ER and WS networks
are similar, as both have short average path lengths between
arbitrary nodes and non-heavy-tailed degree distributions, but
the WS small-world network also has high clustering for small
prewire.

To examine network effects on our network aging model,
we have kept the same model parameters for the (default)
preferential attachment disassortative network, the assortative
network, the ER random network, and the WS small-world
network. (The scale-free exponent α is only used in the disas-
sortative and assortative networks.) We examine ten random
realizations of each network. We have also varied model
parameters independently for each of these networks (data not
shown) and obtained the same qualitative results.

In Fig. 13 we show rank-ordered information fingerprints
for individual deficits I (A; Di |t ), for the different network
topologies as indicated. We observe striking differences in the
scale and range of the mutual information with respect to mor-
tality and differences between the most- and least-connected
nodes. The random and small-world networks both have a
significantly smaller scale of mutual information, together
with a much smaller range of variation.

The scale-free disassortative (default) and assortative net-
works both have a significantly higher scale of information for
the most-connected nodes, as well as considerable variation
(approximately tenfold) among them. However, while the
disassortative network exhibits similar scales of information
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FIG. 14. Average low-k 〈Flow(t )〉 vs average high-k 〈Fhigh(t )〉
plotted for t = 0 to t = 110 for our default network parameters
(purple), the shuffled assortative network (green), the Erdős-Rényi
random network (yellow), and the Watts-Strogatz small world net-
work (light blue). The dashed black line shows the line 〈Flow(t )〉 =
〈Fhigh(t )〉. Results are averaged over ten randomly generated net-
works and the standard deviations are smaller than the linewidth.

between the most- and least-connected nodes, the assorta-
tive network does not. Furthermore, the assortative network
shows only minimal variation of information among its least-
connected nodes.

Only the disassortative (default) network exhibits the fin-
gerprint of mutual information of the NHANES and CSHA
observational studies in Figs. 2 and 3, respectively: with
considerable variation of mutual information between deficits,
overlapping ranges between laboratory (low) and clinical
(high) connectivity deficits, and mutual information on the
order of 10−2 for individual deficits.

In Fig. 14 we investigate the age structure of the FIs
generated by the low- and high-connectivity nodes. We plot

FIG. 15. Mortality rate vs age for each of the networks: (a) disas-
sortative scale-free network (purple circles), (b) assortative scale-free
network (green), (c) WS small-world network (light blue), and (d)
ER random network (yellow). Computational results (circles) are
averaged over ten randomly generated networks and error bars show
the standard deviations. Black squares are observed human mortality
rates [53].

FIG. 16. Plot of 〈Fhigh〉 vs age for each of the networks: (a) disas-
sortative scale-free network (purple circles), (b) assortative scale-free
network (green), (c) WS small-world network (light blue), and (d)
ER random network (yellow). Computational results (circles) are
averaged over ten randomly generated networks and error bars show
the standard deviations. Black squares are observed human clinical
frailty [12].

〈Flow(t )〉 vs 〈Fhigh(t )〉 for the different network topologies.
We see that the assortative network shows a rapid increase
in Flow, followed by growth of Fhigh. In contrast, for the
disassortative, random, and small-world networks there is
comparable growth of both Flow and Fhigh, though with higher
Flow and a later crossover for the disassortative network.

In Fig. 15 we plot the average mortality rates vs age for
different network topologies, with colored circles showing
the computational model results and colored lines for the
corresponding mean-field model results. Black squares in-
dicate observed mortality rates [53]. Similarly, in Fig. 16
we plot 〈Fhigh〉 vs age t for both observational data (black
squares) and model data for different networks (colored
points).

Even without parameter adjustment, most of the network
topologies approximately capture the observational data af-
ter t = 20 yr. Some differences are seen, particularly for
the assortative scale-free network in the mortality rate. This
agreement indicates that mortality and frailty data alone do
not strongly constrain the network topology.

From Fig. 13 we observe early damage of Flow in the
assortative network. Our MFT allows us to narrow down what
aspects of the network are leading to this behavior, since the
only aspects of the network structure included are the degree
distribution P (k) and NN-degree correlations P (k′|k).

Different network topologies are easily introduced pro-
vided P (k) and P (k′|k) are known. The exact P (k) for our
default shifted-linear preferential attachment networks [31],
ER random networks, and WS small-world networks [54] are
known. [We remove zero-degree nodes from the ER random
degree distribution, so Pk �=0(k) = P (k)/

∑
l �=0 P (l).] Using

various P (k′|k), we can then put different degree correlations
into our MFT network. We include three types of degree corre-
lations, uncorrelated (neutral), assortative, and disassortative
[26].
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For a network with uncorrelated (neutral) connec-
tions, P (k′|k) = k′P (k′)/〈k〉. We then have kNN(k) =∑

k′ k′P (k′|k) = 〈k2〉/〈k〉, so all nodes have the same NN
degree. These correlations are used for ER random and WS
small-world networks and recover the approximately constant
kNN that we observed in Fig. 12.

In a network with assortative correlations, nodes tend
to be connected to other nodes of similar degree. Assorta-
tive correlations that approximate those used in our com-

putational model in Sec. III D are [55] P (k′|k) = αδk′k +
(1 − α)k′P (k′)/〈k〉. These lead to kNN(k) = ∑

k′ k′P (k′|k) =
αk + (1 − α)〈k2〉/〈k〉, which increases linearly with k (see
Fig. 12). Changing α modifies the amount of assortative
correlation; we use α = 0.8.

In a network with disassortative connections, nodes tend to
be connected to other nodes of differing degree. The (disassor-
tative) correlations for our default shifted-linear preferential
attachment network are [31]

P (k′|k) = �(k + λ + α)�(k′ + λ)

k�(m + λ)�(k + k′ + 2λ + α)

×
[

k∑
i=m+1

�(i + m + 2λ + α − 1)

�(i + λ + α − 1)

(
k + k′ − m − i

k′ − m

)
+

k′∑
i=m+1

�(i + m + 2λ + α − 1)

�(i + λ + α − 1)

(
k + k′ − m − i

k − m

)]
, (9)

where m = 〈k〉/2 = kmin and λ = m(α − 3). This is exact in
the limit N → ∞ [31] and gives disassortative correlations
where kNN(k) decreases with k.

In Fig. 17 we show the average low-k FI vs the average
high-k FI, 〈Flow(t )〉 vs 〈Fhigh(t )〉 from our MFT. In purple we
use the (default) preferential attachment disassortative corre-
lations, in green we use assortative correlations, and in light
blue we use a WS small-world network. We see qualitative
agreement with the age structure shown in Fig. 14, confirm-
ing that NN-degree correlations (included in our MFT) are
important for the observed age structure. (We have not shown
MFT results for the ER random network since 〈Flow〉 behaves
poorly when it includes nodes with k � 2, due to their great
variability of local frailty fi .)

E. Mutual information of FI with mortality

We have seen that Flow is damaged earlier than Fhigh

(Fig. 6) and that the mutual information of poorly connected

FIG. 17. Average low-k 〈Flow(t )〉 vs average high-k 〈Fhigh(t )〉
from our mean-field model in Sec. II D. The dashed black line shows
the line 〈Flow(t )〉 = 〈Fhigh(t )〉. A scale-free network with preferential
attachment disassortative correlations (default network) is shown in
purple, a scale-free network with assortative correlations in green,
and a WS small-world network with neutral correlations in light blue.

(k = 2) nodes with large nearest-neighbor degree significantly
overlaps with the informativeness of the most-connected
nodes (Fig. 10) in our (disassortative) scale-free network
model. Because of these informative earlier damaged nodes,
we were interested in whether Flow could be more informative
of mortality than Fhigh, particularly at younger ages. In Fig. 18
we show the difference in information for Flow and Fhigh

for different mortality outcomes vs age. We find that Flow

is slightly more informative at ages less than approximately
65 and is increasingly more informative than Fhigh at these
younger ages for longer mortality outcomes. This is the result
of Flow nodes being damaged early but having a delayed effect
on mortality, so they are an early predictor of later mortality,
but not so much immediate mortality. The relatively large
standard deviations for different randomly generated networks

FIG. 18. Difference in mutual information of Flow and Fhigh

[I (M; Flow|t ) − I (M; Fhigh|t )] vs age t for different binary mortality
outcomes. The 5-yr mortality outcomes are shown as turquoise
circles and those for 10 yr as orange squares. The dashed line shows
when the information of both FIs is equal. Error bars represent
the standard deviation between randomly generated networks. The
purple down and green up triangles indicate the information differ-
ence for 10- and 5-yr mortality, respectively, of F

high-kNN
low , which is

constructed with n = 32 nodes with k = 2 that are randomly chosen
from those with above-average kNN.

032302-12



PROBING THE NETWORK STRUCTURE OF HEALTH … PHYSICAL REVIEW E 98, 032302 (2018)

show that this result is affected by the particular randomly
generated network.

While the observational NHANES and CSHA sample sizes
are much smaller, a similar calculation shows slightly lower
Flab information −0.002 ± 0.013 compared to Fclin in the
NHANES data for younger people (65–75 yrs) and slightly
higher mutual Flab information +0.033 ± 0.027 compared to
Fclin in the CSHA data. While we do not have sufficient data
to vary our mortality outcome to determine if Flab is more
predictive of later mortality outcomes as we did in the model,
we can see in the CSHA data that Flab is more informative for
younger people.

Since we found that the most informative low-connectivity
nodes were those with large kNN, we also considered an FI
constructed from n = 32 randomly chosen nodes of lowest
degree (k = 2) from those that have above-average kNN. The
information advantage of F

high-kNN
low is indicated in Fig. 18 with

down and up triangles for 10- and 5-yr mortality, as indicated.
The advantage over Fhigh is large and significant for ages
below t = 80 yr, with a stronger advantage at earlier ages for
later mortality. This will be an attractive avenue to pursue.

IV. SUMMARY AND DISCUSSION

The observational Fclin and Flab respectively measure clin-
ically observable damage that tends to occur late in life and
preclinical damage that is typically observable in laboratory
tests or biomarkers before clinical damage is seen. However,
they are similarly informative of human mortality [19,22,24].
Our analysis indicates that individual laboratory and clinical
deficits have broad and overlapping ranges of mutual informa-
tion.

Our working hypothesis is that clinical deficits correspond
to high-connectivity nodes of a complex network, while labo-
ratory deficits correspond to lower-connectivity nodes. With
our network model of individual aging and mortality, we
have confirmed that Fhigh and Flow, formed from high- and
low-connectivity nodes, respectively, behave similarly to the
observational Fclin and Flab.

Within the context of our aging model, we uncover the
mechanisms of this observed behavior. In our model low-
k nodes tend to be damaged before high-k nodes. This is
because of the larger average damage rates of low-k nodes
compared to high-k nodes (as calculated with our network
mean-field theory and illustrated in Fig. 7). At the same time,
our information spectrum shows that information I (A; Di |t )
increases with k. Roughly speaking, high-k nodes need a
larger local frailty f to have comparable damage rates to
low-k nodes. Thus, damage of high-k nodes is informative of
high network damage, which also leads to mortality. This is
why high-k nodes both are damaged later and are informative
of mortality [Fig. 10(b)].

However, some low-k nodes also are damaged later and
are highly informative of mortality. Information I (A; Di |t )
increases with kNN for the low-k nodes, and low-k high-kNN

nodes are damaged later. This can also be explained using the
network structure. Low-k nodes are protected from damage
when they are connected to high-k nodes. Rapidly damaged
low-k nodes without this protection tend to be damaged early
for most individuals, giving these nodes a low information

value of mortality. Conversely, protected nodes tend to be
damaged only when their high-degree neighbors start to be-
come damaged, which only occurs when the network is heav-
ily damaged and close to mortality. As a result, only the low-
k nodes with high-kNN are highly informative [Fig. 10(a)].
Interestingly, these nodes still tend to be damaged before
high-k nodes, leading to an early predictor of mortality.

Degree correlations control the average degree of neigh-
boring nodes and hence control the amount of protection in
low-k nodes. By modifying the degree correlations in the
network in our computational model we have shown that
this protection can be caused by disassortative correlations,
where low-k nodes tend to attach to high-k nodes. Conversely,
eliminating low-k high-kNN nodes by modifying the network
to introduce assortative correlations removes this protection
and we then find that all low-k nodes have low information
[Fig. 13(b)].

Our mean-field model allows us to explicitly modify
the degree distribution and the degree correlations with the
nearest-neighbor degree distribution P (k′|k) and to include no
other network features. In our mean-field model we see simi-
lar results to our computational model where, e.g., adding as-
sortative correlations increases the rate at which Flow increases
with respect to Fhigh. This confirms that degree distribution
and degree correlations largely determine the early damage of
low-k nodes that we observe in scale-free networks.

Degree distributions and correlations only weakly control
the behavior of ER random and WS-small world networks.
The low variation in k and kNN in those networks results in
a lack of contrast between the damage rates of nodes. This
leads to node information that is nearly constant throughout
the network and to only small differences in the damage
structure of low-k and high-k nodes [Figs. 13(c) and 13(d)].
This also leads to low magnitude of the mutual information
per node, since nodes behave much more uniformly and
“randomly” than in a scale-free network. However, we can
still see some protection in low-k nodes. This is particularly
apparent in the ER random network when Fhigh surpasses Flow

[Fig. 14(d)].
The behavior of observational deficits seems to best resem-

ble the behavior of the computational model with a scale-
free network and disassortative correlations. Node informa-
tion seen in the (default) scale-free disassortative network
is a much better qualitative match of observational data, as
compared with scale-free assortative, WS small-world, or ER
random networks.

Our analogy between observational deficits and model
nodes allows us to make predictions about the underlying
network structure of observational health deficits, even though
we cannot directly measure this network. Assuming the mech-
anisms studied here (k and kNN based) are dominant, the
observational network should have a heavy-tail degree distri-
bution so that a large range of possible information values can
be obtained. The network should also include disassortative
correlations so that there are connections between high-k
and low-k nodes, allowing low-k nodes to be informative of
mortality.

We remain open to the possibility that other network
topologies not considered here, perhaps with different dy-
namical models, would provide a better phenomenological
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description of the observational data. Nevertheless, we have
demonstrated that the phenomenology we have studied does
discriminate among the network topologies we have consid-
ered. In particular, we have found that considering both the
age structure and the information fingerprint of both low- and
high-connectivity deficits is useful in probing the network
structure within human aging.

From observational data we find that clinical deficits that
integrate many systems into their performance (e.g., func-
tional disabilities or social engagement) are very informative
(Figs. 2 and 3). In contrast, single diagnoses, even ones
strongly associated with age such as osteoporosis, on their
own offer less value. The model interpretation of this is that
these high information disability deficits have a higher con-
nectivity than lower information clinical deficits. It intuitively
makes sense for deficits that integrate many systems to have
a large connectivity. In support of this, our partial network
reconstruction (Fig. 5) shows that high information clinical
deficits in both the NHANES and CSHA correspond to nodes
with a high reconstructed degree.

We have shown that the age structure of network dam-
age is related to the network structure. Highly informative
low-degree nodes (preclinical deficits) damaged early in life
promote the damage of their high-degree neighbors, but the
damage to their high-degree neighbors takes time and is
not seen in the high-degree (clinical) FI until later ages.
Indeed, we have shown that an Flow is slightly more in-
formative at earlier ages and is increasingly informative for
longer mortality outcomes (5 yr vs 10 yr) (see Fig. 18).
Choosing more high-kNN nodes in Flab significantly en-
hances this effect. Low-k nodes are informative of long-term
mortality rather than short term. Similar results are seen
in the observational CSHA data, which indicates that Flab

could be used as an early measure of risk of future poor
health.

Our network model is generic, without a specific mapping
between model nodes and observed human deficits. This is
because we have no reliable way of extracting a specific
network from observational data, though we have shown
that a partial reconstruction of the rank ordering of high-

connectivity nodes can be done using a method similar to
that of the WGCNA software package [41] (see also [56]).
Distinct parametrization of every node of a network model
would require enormous amounts of observational data, if
it could be done at all. For example, we have fewer than
70 observational nodes in NHANES data, but our network
model uses N = 10 000 nodes, so observational data will
undersample a large network. We similarly expect many more
unobserved than observed deficits in any observational study.
Instead, we rely on signatures of the network structure that we
can calculate from our partial reconstruction. We can then use
our generic model to identify robust qualitative phenotypes in
order to uncover generic mechanisms, to predict behavior, and
to improve the utility of the frailty index in human aging and
mortality.

In this paper we have kept our model parametrization un-
changed from the default parameters, though we have checked
(data not shown) that our results are qualitatively robust to
parameter variation. This has allowed us to explore the impact
of network topology on mortality statistics (a small effect) and
on mutual information between health deficits (a strong and
distinctive effect). The Fhigh and Flow model phenomenology
is also affected by changes in network topology. This indicates
that both Fhigh and Flow are usefully distinct characteristics of
health in our network model. Our results provide insight into
the mechanisms of the similarly useful and distinct observa-
tional Fclin and Flab [19,20,24].
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