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A B S T R A C T   

Summary measures of health quantify the aging process of individuals. They should be interpretable, associated 
with future adverse outcomes, and straightforward to assemble. We use the rank-ordering of risk within a 
population to construct a quantile frailty index (QFI) that avoids dichotomization, is convenient and interpret-
able, and is associated with adverse outcomes. We show that the QFI outperforms previous frailty index (FI) 
measures on cross-sectional laboratory data (NHANES, CSHA, and ELSA). We construct the QFI by ranking the 
risk of individuals with respect to a reference population. Sex-specific reference populations narrow male–female 
FI differences as a function of age, and improve predictive performance. With a fixed reference population of 
80–85 year olds, our QFI appears similar to earlier FI measures. With an age-matched reference population for 
each individual, we obtain a QFI that contains very little age information and that has similar predictive per-
formance as other age-controlled FI measures. Adding age as an auxiliary variable leads to significantly better 
performance. We conclude that age should be controlled for when evaluating the predictive performance of 
summary measures of health. This is straight-forward to do with the QFI.   

1. Introduction 

Population health declines with advancing age, but health trajec-
tories vary considerably between individuals (Nicklett, 2011). There are 
many distinct measures used to assess aspects of health on both the in-
dividual and population level. These range from molecular details of 
epigenetic methylation, to laboratory blood and metabolite tests, to 
clinical assessment measures in the comprehensive geriatric assessment, 
to self-assessed functional measures such as in the activities of daily 
living (ADL) or independent ADL (IADL). In principle, tens of thousands 
of distinct measurements are accessible for any individual. Nevertheless, 
any one measurement varies both intrinsically and due to measurement 
quality control (McPherson, 2017). Furthermore, any one measurement 
paints an incomplete picture of individual health. To obtain a fuller 
picture, summary measures of health can be assembled from many 
disparate measurements. 

Summary measures of health combine many aspects of individual 
health into one. They include frailty (Mitnitski et al., 2001; Fried et al., 
2001; Aguayo et al., 2018), prognostic measures (Shi et al., 2020), 
Allostatic Load (Juster et al., 2010), epigenetic clocks (Horvath, 2013; 
Levine, 2020), and biological age (Li et al., 2020; Belsky et al., 2018). 

These metrics span the range from the tissue level of biological age, to 
the standard laboratory evaluations of the Allostatic Load, to the func-
tional level of the FI or the frailty phenotype. Functional-level summary 
measures are strongly associated with a wide array of adverse health 
outcomes (Zucchelli et al., 201A). 

While many summary measures of health overlap in how they are 
constructed or how they perform, they are generally not identical 
(Aguayo et al., 2018; Shi et al., 2020; Belsky et al., 2018; Levine, 2020; 
Li et al., 2020). This reBects multidimensional aging – including 
organismal scales ranging from cellular, to tissue, to functional (Ferrucci 
et al., 2018; Levine et al., 2018; Jazwinski and Kim, 201A). To assess 
multidimensional health more completely, we need to continue to both 
develop new summary measures of health and to improve existing ones. 
For example, controlling for both age and sex is important in assessing 
and comparing individual health. How to conveniently and effectively 
do this for a given summary measure of health is a persistent challenge. 

Here, we focus on the frailty index (FI) (Mitnitski et al., 2001) 
because it is simply constructed and can be effectively adapted to a 
broad variety of health aspects. The FI has been defined as the propor-
tion of measured health aspects which are considered to be in the un-
healthy state. Candidate health variables considered in the FI include 
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anything health-related that increases in prevalence with age (Searle 
et al., 2008). These have typically been high-level health deficits such as 
impairments in acts of daily living, self-rated health, and other clinically 
observable deficits in an FI-Clin (Rockwood et al., 200G). However, 
biomarkers such as the results of blood tests can also be used to create an 
effective FI-Lab (Blodgett et al., 2017; Mitnitski et al., 2015; Howlett 
et al., 201G; Stubbings et al., 2020). Both FI-Clin and FI-Lab are strongly 
associated with adverse health outcomes including mortality. 

One challenge in calculating FI-Lab is how to properly incorporate 
measurements which are not already dichotomized. Typically, mea-
surements are dichotomized based on normal reference ranges such as 
those found in clinician’s handbooks – such as McPherson (2017) 
(Blodgett et al., 2017; Mitnitski et al., 2015; Howlett et al., 201G). 
However, diagnostic thresholds – intended to guide treatment – may not 
be appropriate for a summary measure of health (Stubbings et al., 2020). 
Furthermore, many biomarkers do not have associated diagnostic 

thresholds. With larger omics-style biomarker assays becoming more 
prevalent this absence will become increasingly pressing (Karczewski 
and Snyder, 2018). 

There are also significant intuitive and empirical issues with 
dichotomization (or “binarization”) of continuous variables (Cohen, 
1A83; Altman and Royston, 200D; Royston et al., 200D; Fedorov et al., 
200A; Naggara et al., 2011; Dawson and Weiss, 2012). These are well 
understood for predictive measures since there are quantifiable losses in 
statistical power when imposing dichotomy on a continuous variable 
(Cohen, 1A83). Individual dichotomized variables are sensitive to small 
variations around the cutpoint. Consider an individual measurement 
with a value close to the dichotomization thresholdE any small variation 
of that measurement could result in a switch from absence to presence of 
deficit – the maximum penalty for a minimal variation. Frailty indices 
reduce these issues by averaging a large number of variables (Pe na 
et al., 201G; Mitnitski et al., 2015), but the scale of these effects have not 

Fig. 1. Risk quantile calculation example with the ELSA dataset. We show (a) the distribution of gait speeds for example reference populations of D0–70 year-olds 
(green) and 80–A0 year-olds (blue), with (b) the associated risk quantile x vs+ gait speed. The inset in (b) shows the age distribution. Gait speed decreases with age, so 
the highest risk quantiles are associated with low gait speeds. 

Fig. 2. The relationship between number of 
risk categories and the predictive value with 
respect to mortality within 5 years in the 
NHANES dataset. 2 risk categories is equivalent 
to dichotomization at the median, 3 risk cate-
gories equivalent to risk tertiles, and so forth. 
The upper plot shows the effect using 5 
randomly selected biomarkers, the middle plot 
shows the best 5 biomarkers selected by AHC 
with respect to 5 year mortality, and the bottom 
plot shows the results using all available bio-
markers. We resample the data using half the 
population size G00 times for each point, with 
the random 5 biomarkers also being re-selected 
20 times. The dotted lines show the upper and 
lower 1st percentiles of AHC, the shaded blue 
region shows the upper and lower quartile 
range of AHC, and the dashed line shows the 
average AHC. Note that AHC ranges improve 
from the top to the bottom plots.   
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been systematically explored within the FI literature. 
To assemble an FI-Lab without dichotomization, we first need to pre- 

process health measurements in order to be able to combine them into a 
single measure. The common approach of using .-scores (or standard 
scores), which shift measurements by their mean and then rescale by 
their standard deviation, does not naturally fit into the 0 (maximal 

health) to 1 (maximal unhealth) range of FI scores. However, ranking 
individuals by age-related health risk with respect to a reference pop-
ulation is an effective way of pre-processing an arbitrary set of 
biomarker measurements that naturally leads to a 0 to 1 range (Stub-
bings et al., 2020). Furthermore, using age-related risk ensures that 
scores increase with the aging trend, following the definition of a deficit 

Fig. 3. The predictive value of various FI-Lab 
with respect to 5 year mortality in the 
NHANES study. From left to right we show the 
QFI using the 80–85 year-old reference popu-
lation, the QFI with a 50–55 year-old reference, 
QFI with a 20–25 year-old reference, QFI using 
the whole NHANES population, and FI-GCP 
with the cutpoint at 0.5 or at 0.8 (Stubbings 
et al., 2020). Box and whisker plots display the 
data from resampling and cross-validationE the 
boxes represent the upper and lower quartiles, 
the whiskers go to the AAth and 1st percentiles, 
and the circles are remaining outliers. The short 
dashed line within each box is the median, the 
solid line the mean, and the diamond is the AHC 
for the full data set without cross validation or 
resampling. The horizontal grey dashed line 
shows the AHC of the published FI-Lab using 
the same data (Blodgett et al., 2017).   

Fig. 4. QFI on wave 2 of the ELSA dataset, using a reference 80–85 year-old population. (a) The average FI-Clin binned by QFI for wave 2 of the ELSA dataset. (b) The 
average QFI (blue points) and FI-Clin (black squares, described in the Supplemental Information) binned by age. (c) The relationship between the QFI and the total 
number of existing or previous diagnoses. The boxes represent the upper and lower quartiles, the whiskers go to the AAth and 1st percentiles, and the circles are 
remaining outliers. The short dashed line within each box is the median and the solid line is the mean. (d) The fraction of the population with 1 or more new 
diagnoses in the year following the QFI evaluation. 

#+ Stu,,in-s et al+                                                                                                                                                                                                                              
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in Searle et al. (2008). Rank normalization is often used in e.g. 
pre-processing of gene expression data (Tsodikov et al., 2002), and is 
illustrated in Fig. 1. We found that by imposing a single global quantile 
cutpoint (GCP) on all of the individual rank-normalized scores, the 
resulting FI-GCP outperformed pre-existing FI-lab with the same data 
and was effective for a broad range of GCP (Stubbings et al., 2020). We 
show in the Methods how this quantile approach can be adapted to 
assemble an FI without dichotomization. Nevertheless, while quantile 
approaches avoid artificially grouping individual measurements, pre-
serve aging trends, and treat all biomarkers similarly, they do require an 
explicit reference population. 

Any health assessment is implicitly with respect to one or more 
reference populations. For example, dichotomization of any one vari-
able creates two reference populations – a healthy one and an unhealthy 
one. Repeating this for many health variables creates many small 
reference populations that have identical dichotomized scores across 
many health measures. In contrast, quantile approaches can share a 
reference population across many health measures. With a small number 
of reference populations we can more easily treat them as independent, 

or controllable, ingredients of our summary measure of health. In 
particular, we can use reference populations to control for age and sex 
effects. 

By construction, deficits included in the FI increase in prevalence 
with age (Searle et al., 2008). As a result, there is often a significant 
correlation between included biomarkers and age. For dichotomized 
biomarkers, this raises the question of how to age-control thresholds. 
Doing this by prognosis raises the question of whether multiple 
age-related outcomes may lead to distinct thresholds. However 
age-control is done, or not done, it will affect the resulting FI-lab. We can 
think of age as a confounding variable in terms of assessing aging health. 
How much we can learn about individual health independently of an 
individual’s ageI This is broad question that has also been raised in the 
context of biological age (Mitnitski et al., 2017), and other summary 
measures of health. 

Issues of dichotomization are compounded when state variables, 
such as sex, are considered. Summary measures of health should reBect 
differences in health between the sexes. In many studies men are 
measured as “healthier” despite having greater prevalence of negative 
outcomes (Gordon and Hubbard, 2018). Selecting clinical-level health 
deficits based on sex-dependent prevalence affects sex-dependent mor-
tality prediction of composite measures (Kulminski et al., 2008). When 
biomarker measurements are used the prevalence of each deficit can be 
tuned by the dichotomization threshold. However, using sex-dependent 
diagnostic thresholds still results in large sex differences in the FI 
(Howlett et al., 201G). Furthermore, new biomarkers do not yet have 
known diagnostic relevance or sex-dependent relevance. A transparent 
approach may be bestE treat sexes as independent populations and use 
identical methods for calculating FI for each sex. 

While a broad reference population with natural demographics is 
used in e.g. the frailty phenotype (Fried et al., 2001) (gender, height, 
BMI) or allostatic load (Juster et al., 2010) (non-stratified), we find that 
three smaller reference populations are particularly useful. One is a 
population of older adults (80–85 year-olds). This group is more prone 
to adverse health and outcomes than younger adults, but is still very well 
represented in population studies since they are slightly below the 
average human lifespan in Canada. This reference population is useful 
since it leads to an FI that is most similar to existing FI-lab measures in 
appearance. The second reference population we explore is a set of 
age-matched populations that can be matched to each individual. We 
use this to critically examine the explicit and implicit role of age in the 
FI, particularly with respect to its association with adverse health out-
comes. The third type of reference population is to use sex-specific 
reference cohorts in combination with either of the others. This allows 
investigation of sex differences in the FI with a non-parametric 
approach. 

In this work, we show that the quantiles of age-related risk lead to a 
predictive and interpretable FI-lab, which we call the quantile frailty 
index (QFI). The QFI predicts 5 year mortality significantly better than 
previous dichotomized methods of creating FI-Lab. The QFI is strongly 
correlated with the number of accumulated diagnoses, with number of 
new diagnoses accumulated at a one year follow-up, and is strongly 
associated with independent FI-Clin for the same individuals. Further-
more, we show that changing the reference population does not signif-
icantly affect prediction, but does affect the observed distribution of the 
QFI. Hsing different reference populations, we investigate the role of age 
and sex in the predictive quality of the QFI. 

2. Methods 

"+&+ /uantile frailty index 0/123 

Consider N biomarkers that are assessed for every individual in a 
reference population, so that the ith biomarker (yi) has a distribution P 
(yi). We take the risk quantile xi as the position of the corresponding 
biomarker value yi in its cumulative distribution. For biomarkers which 

Fig. 5. The effects of changing the reference population on the distribution of 
QFI scores in the NHANES (top) and CSHA (bottom) studies. The upper 1J 
(light blue) and lower 1J (dark blue) of the QFI distributions as the age of the 
reference cohort changes in 5 year bins. On the right side of the plots, the red 
blocks show the upper 1J (light red), lower 1J (dark red), and average (red 
point) for the respective published FI-Lab using diagnostic thresholds (Blodgett 
et al., 2017; Howlett et al., 201G). We require each bin to have at least 20 in-
dividuals, removing only the 100–105 year-old bin in the CSHA study that had 
2 individuals. 

#+ Stu,,in-s et al+                                                                                                                                                                                                                              
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increase with age (e.g. c-reactive protein), we take the quantile to in-
crease with increases of the biomarkerE 

xi =
∫ yi

0
P(y′

i)dy′

i. (1)  

In the case of biomarkers that decrease with age (e.g. gait speed), we 
take the quantile to increase with decreases of the biomarkerE 

xi =
∫ ∞

yi

P(y′

i)dy′

i . (2)  

In both cases, the quantile xi ∈ K0, 1L increases with age on average. 
Alternatively, risk directions could be chosen such that increased 
quantile score is associated with increased mortality or other adverse 
health outcomes (Stubbings et al., 2020). However, using age-related 
risk directions satisfies the definition of a deficit defined by Searle 
et al. (2008). Furthermore, the differences between age-related risk and 
mortality-related risk are small in the datasets examined here – as also 
seen in (Stubbings et al., 2020). Obtaining the quantile is equivalent to 
performing a rank normalization of the score with respect to the popu-
lation. Because many biomarkers have limited measurement precision 
there are frequent ties in biomarker scores. We use the minimum rank of 
tied scores; other methods of tie-breaking lead to similar results. 

Our definition of the risk quantile means that xi corresponds to the 
proportion of the population that has lower health-risk associated to that 
biomarker. So, xi is equivalent to the “fraction unhealthier than” for a 
given biomarker with respect to a reference population. For example, 
Fig. 1 shows that having a gait speed of 1 mFs is slower than about 50J 
of the D0–70 year-olds, so xi = 0.5 is the fraction of D0–70 year-olds that 
an individual with a gait speed of 1.0 mFs is unhealthier than. Calcu-
lating risk scores using this approach can be effectively done in many 
programming and statistics packages. 

We then average the N non-dichotomized risk quantile measures for 
every biomarker to obtain an individual frailty index, the QFIE 

QFI =
∑N

i=1

xi

N =
〈

xi

〉
, (3)  

where the angle-brackets indicate an average. We then have /12 ∈ K0, 1L. 
We can quantify the advantage of having a continuous score by also 

examining m discrete risk categories such as dichotomization (m = 2) 
(Stubbings et al., 2020), tertiles (m = 3), quartiles (m = G), or general m. 

For m risk categories, our risk scores would then be 

d(m)
i = floor(xi ∗ m)

/
(m − 1), (G)  

where the 4oor(5) function returns the greatest integer less than or equal 
to 5. So for dichotomization (m = 2) scores of xi ∈ K0, 0.5) would give 
d(2)

i = 0 while xi ∈ K0.5, 1) would give d(2)
i = 1. We can then construct 

discrete QFIm =
∑N

i=1d(m)
i /N. As m→ ∞ we obtain di → xi. 

The QFI can be calculated with respect to an arbitrary reference 
populations. We examine two age-related reference populations. The 
first is a fixed-age reference, which was defined as all individuals from a 
particular study (NHANES, CSHA, or ELSA) that were within a fixed 
range of ages – 80–85 year olds unless otherwise stated. We will use this 
80–85 year old reference population as the default reference for the QFI 
– unless otherwise mentioned this is the reference population used. 

A second reference population was age-matched. Here we used the 
same fixed-range bins for both the reference population and the in-
dividuals (so, e.g., the quantiles of 50–55 year olds were determined 
with respect to 50–55 year olds). For all reference populations, and 
unless otherwise stated, our results are for non-overlapping 5-year 
ranges of ages and the age of the population for plotting purposes was 
taken to be the middle of the range. 

We also consider sex-matched reference populations. Some mea-
surements (e.g. grip strength) vary substantially between the sexes and 
comparing individuals only within their group is desirable. We can 
combine sex and age to make very specific reference populations, for 
instance comparing all women in the study to a subset of 80–85 year old 
women, or women of similar age. 

"+"+ Assessment 

We evaluate predictive performance of the FI using the area under 
the receiver operating characteristics curve (AHC) (Buitinck et al., 
2013). We re-sample random halves of the population 100 times to es-
timate errors, while FI-GCP measures are cross validated as described in 
Stubbings et al. (2020). We present distributions using box and whisker 
plots with whiskers extending to the AAth percentiles. We exclude bins 
with less than 20 individuals. All analysis is available on GitHub 
(Stubbings, 2021); logistic regression is done using the statsmodels Py-
thon package (Seabold and Perktold, 2010). 

Fig. 6. Comparing the predictive value for the 
different methods of calculating the QFI against 
5 year mortality in the NHANES dataset. From 
left to right we first have two “raw” pointsE the 
QFI with an 80–85 year-old reference popula-
tion (QFI-80) and a logistic regression model 
using all of the biomarkers regressed against 5 
year mortality. Then three age-controlled 
pointsE the age-paired QFI, QFI-80 with AHC 
averaged across performance within 5 year age 
bins, and a logistic regression of the biomarkers 
against 5 year mortality with AHC averaged 
across performance within 5 year age bins. 
Then three age-supplemented pointsE the age- 
paired QFI combined with age in a logistic 
regression, the QFI-80 combined with age in a 
logistic regression, and the raw biomarkers 
included with age in a logistic regression. Box 
and whiskers are from resampling with half the 
population. The boxes represent the upper and 
lower quartiles, the whiskers go to the AAth and 
1st percentiles, and the circles are remaining 
outliers. The short dashed line within each box 

is the median, the solid line the mean, and the diamond is the AHC for the full data set without resampling. We use logistic regression to control for age in the 
prediction rather than for testing a logistic model, so performance is evaluated on the same individuals as the model is fit on.   

#+ Stu,,in-s et al+                                                                                                                                                                                                                              
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"+3+ Data 

We have explored the QFI with cross-sectional data from the Na-
tional Health and Nutrition Examination Study (NHANES) (Centers for 
Disease Control, 201G) and the Canadian Study of Health and Aging 
(CSHA) (Canadian Study of Health, 1AAG). The NHANES data set con-
sists of the 8881 individuals from the NHANES study with data for at 
least 11 of the 1D available biomarkers. This sample has an age range of 
20–85 years. The data used from the CSHA study has A73 individuals 
aged D5+ for which data is available for at least 1D of the 22 biomarkers. 
We use the same NHANES and CSHA data examined previously with 
other frailty indices (Stubbings et al., 2020; Howlett et al., 201G; 
Blodgett et al., 2017). We also use data from the ELSA study (Oldfield 
et al., 2020), described in detail in Supplemental information. We focus 
on data from the second and fourth waves of the ELSA study, and 
examine predictive value on available data in subsequent waves. 

"+4+ !eplication 

All figures are replicated in waves 2 and G of the ELSA dataset, as 
well as in the NHANES and CSHA datasets when applicable. The 

exceptions being the figures where diagnosis data is used, since it is not 
available in the NHANES and CSHA datasets. Preferentially, we show 
data from the NHANES study and wave 2 of the ELSA data due to their 
larger sample sizes and number of mortality events. Replicated figures 
are available in the Supplemental material (Figs. S1–S15). 

3. Results and discussion 

3+&+ Advanta-es of not dichotomi5in- 

We compared the effects of transforming biomarker measurements 
into categorical variables with m categories and found that using more 
categories gives better prediction in the NHANES data-set (Fig. 2). 
Prediction can be improved by using 5 risk categories rather than just 2 
categories (equivalent to binarizing at the median). Hsing more risk 
categories with fewer variables can result in better prediction than 
dichotomization with more variables. Here, using 5 or more risk cate-
gories on the 5 highest predicting biomarkers outperforms 2 risk cate-
gories used for all 17 biomarkers. In the NHANES data-set, quintiles 
perform as well as any finer grouping, which suggests that variation 
within 20J of the population does not have a significant effect on 

Fig. 7. The effects of using sex-specific reference populations on QFI-80 in wave 2 of the ELSA dataset. All plots show female in green and male in blue. (a) The risk 
quantiles for dominant hand grip strength with (filled points) and without (no-fill) using a sex-specific reference population. The non-adjusted male and female scores 
overlap since they are using the same reference population. (b) The difference between sex-adjusted QFI-80 and non-adjusted QFI-80 using all 80–85 year-olds as a 
reference population. Sex-adjusted QFI-80 uses only 80–85-year-olds of the respective sex as the reference population. (c) The average QFI for the sex-adjusted QFI 
(filled) and non-adjusted (no fill) binned by age in 5 year bins, the black points show the associated FI-Clin. (d) The AHC of various QFI with respect to mortality at 5 
year follow up. We compare (from left to right) the QFI-80, sex-paired QFI-80, and age-and-sex-paired QFI for the combined, male, and female populations (from left 
to right). Box and whiskers are from resampling with half the population. The boxes represent the upper and lower quartiles, the whiskers go to the AAth and 1st 
percentiles, and the circles are remaining outliers. The short dashed line within each box is the median, the solid line the mean, and the diamond is the AHC for the 
full data set without resampling. 
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outcomes. However, using the QFI – with as many risk categories as is 
possible with the available data – does not negatively affect prediction 
and is more convenient than restricting everything to quintiles. In the 
other data-sets the plateau of prediction vs number of risk categories 
occurs in different places, but the QFI never under-performs a coarser 
grouping of risk. For the remainder of the paper we will use the QFI. 

In Fig. 3 we show that the QFI performs modestly better than using a 
global cutpoint to binarize biomarkers based on risk quantile (Stubbings 
et al., 2020), and is also better than binarizing biomarkers using diag-
nostic thresholds (Blodgett et al., 2017). Interestingly, using the full 
data-set as a reference population performs the same as using an 80–85 
year-old reference population. We find that the choice of fixed-age 
reference population does not significantly affect the prediction qual-
ity of the QFI. 

3+"+ /12 is interpreta,le 

The detailed characteristics of the QFI are similar to other types of FI. 
We show the relationship between the QFI and the FI-Clin in wave 2 of 
the ELSA data in Fig. Ga. The relationship between QFI and FI-Clin is 
close to linear at larger values. Consistent with this, the aging trend of 
the QFI is very similar to that of FI-Clin – as shown in Fig. Gb. Never-
theless, the average QFI is significantly larger than FI-Clin at all ages. 
Mery few individuals exhibit a QFI below 0.3. 

These detailed characteristics of the QFI are dependent on the choice 
of reference population, though we have seen that predictive perfor-
mance is not. We know that if most of the study is younger than 80 years 
old that selecting an 80 year old reference will make the bulk of the 
study appear relatively healthy. The effect of switching the reference 
population to an unhealthier group is an overall lowering of QFI scores 
in the population. As seen in Fig. 5, selecting an older cohort as the 
reference population leads to a general downwards shift in the distri-
bution, and a slight positive skew. Hsing an older reference makes the 
distribution of the QFI look much more like a typical FI. However, to 
achieve a QFI of 0 an individual would have to be the healthiest indi-
vidual compared to the population across every single biomarker mea-
surement. Intrinsic variability and measurement noise make this 
unlikely even if there is someone in perfect health. 

Although the QFI looks more like a standard FI with older reference 
populations, we do not think that aiming to look exactly like a standard 
FI is necessary. The QFI has a natural interpretation as being the average 
relative health with respect to the reference population. 

We have also used ELSA data to test the association of the QFI with 
the various non-mortality outcomes available. For simplicity we use a 
reference population ages 80–85 in all cases where the QFI is calculated. 
The ELSA dataset has a list of reported diagnoses recorded at every wave 
(see supplemental information for details). We use the wave of first re-
ported diagnosis to relate the QFI to these diagnoses in a number of 
ways. Firstly we look at the total number of accumulated diagnoses as it 
relates to the QFI in Fig. Gc. This figure shows a strong relationship 
between the QFI and the total number of diagnoses before this wave of 
the ELSA. Fig. Gd shows the proportion of individuals with one or more 
new diagnoses in the wave directly following the QFI assessment (1 year 
later). A higher QFI is associated with an increased probability of new 
diagnoses in the coming year on average. The difference in expected 
number of diagnoses almost doubles from a QFI of 0.3 to a QFI of 0.D. 

3+3+ !ole of a-e (ithin the /12 

Since we can define health with respect to a specific age group we 
can also remove the confounding effects of age from the QFI. We do this 
by calculating the QFI with respect to a group of individuals of the same 
age. In this age-paired QFI we group individuals into 5 year age bins and 
calculate the QFI using those binned individuals as the reference 
population. 

We compare the predictive value of the age-paired QFI to the QFI 

with an 80 year old reference population in Fig. D. We find that the QFI- 
80 substantially outperforms the age-paired QFI. However, we find that 
if we calculate the AHC as the average AHC across a set of age-binned 
QFI measurements (see Supplemental Figs. S11–S12) the QFI-80 per-
forms similarly to the age-paired QFI. Furthermore, we find that if we 
add age back in to prediction using a logistic regression of both QFI and 
age – then both the QFI-80 and age-paired QFI perform similarly. As a 
benchmark for mortality prediction with biomarker data we have 
included the results of logistic regression on the raw biomarker mea-
surements. We find that raw regression of the biomarker measurements 
performs better than the raw QFI-80. However, the biomarker mea-
surements perform as badly as other FI measures when age controlled 
and only slightly better than other FI measures when combined with 
age. 

3+4+ Sex*speci6c reference populations 

We also consider sex-specific reference populations, where quantile 
scores for each sex are calculated with respect to a reference cohort of 
only that sex (age restricted or not). In the ELSA data there is a large sex 
difference in the adjusted QFI scores due to the presence of grip strength 
measurements. Fig. 7a and b shows the difference in quantile scores for 
dominant hand grip strength and the resulting shift in QFI. Fig. 7c shows 
that controlling for sex in the reference population has the effect of 
narrowing the difference between male and female across the age range 
for ages below A0 years. Fig. 7d shows that the AHC for 5-year mortality 
predictions improve when controlled for sex. The age-paired QFI also 
saw improved prediction when matching sex (see Fig. S10a 
comparison). 

4. Discussion and summary 

We have shown that the dichotomization of continuous biomarker 
data into binary health deficits negatively affects the predictive value of 
the resulting FI-Lab (Fig. 3). Hsing categorical variables for deficit scores 
increases predictive value of the resulting quantile frailty index (QFI) 
when compared to dichotomizationE increasing the number of risk cat-
egories improves the predictive value of the FI (Fig. 2). These results are 
replicated in the CSHA, NHANES and ELSA datasets. 

The QFI allows us to easily explore the average relative risk with 
respect to the reference population across many biomarkers. For 
example, an individual with a QFI score of 0.3 is healthier than 70J of 
the reference population. Selecting an appropriate reference population 
can enhance the interpretability of the QFIE a QFI score of 0.D with 
respect to a reference population of 80 year olds means that the indi-
vidual is in worse health than D0J of 80 year olds. By using a common 
reference population, the relative health of individuals in different 
populations or subpopulations can be assessed. This could be useful 
when study populations are heterogeneous. For example, with mixtures 
of community dwelling and institutionalized individuals. 

The QFI is intended to be convenient, interpretable, predictive, and 
scalable to large new data sets. We have used increasing age prevalence 
of biomarkers as a readily available risk metric that can be used to rank 
variables (Searle et al., 2008). Any other risk metric can be used instead, 
if it is available. Similarly, we have used reference populations extracted 
from and applied within specific studies. Hsing different studies to 
provide reference populations, or different reference populations for 
different biomarkers, could be easily implemented with our approach. 
For any such innovation, it will be important to examine predictive 
performance and robustness. 

We have critically addressed the implicit inclusion of age in the QFI 
through the age-correlation of included health attributes. By using age- 
paired reference populations, or by considering predictive value of 
narrow ranges of age, we see that the predictive value of the QFI is 
strongly degraded (Fig. D). Conversely, by combining the QFI with age 
explicitly within a logistic regression we see that predictive power is 
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greatly enhanced. Including age explicitly in this way leads to approx-
imately the same predictive power whether we use an age-paired QFI, a 
reference population on 80-year olds, or raw biomarker values. This 
indicates that the mortality-associated age-independent health infor-
mation contained in the biomarkers comprising the QFI is retained in the 
QFI. 

In clinical practice, any summary health measure for an individual 
will be available together with age – so both should be used for prog-
nosis. A single summary health measure may also be desirable. By 
including age explicitly in assessing predictive power of the QFI, we can 
assess how much a single summary measure of health could be improved 
by constructing it with more age-associated components – either 
implicitly or explicitly. For the QFI this requires a fixed-age reference 
population. 

If we prefer a summary measure of health that excludes age, then we 
need to show that the age-averaged predictive quality agrees with the 
overall quality. For the QFI, we can construct this age-excluded measure 
using age-paired reference populations. 

If we want to compare the predictive power of two summary mea-
sures of health through, e.g., the AHC of an ROC, it is clear that any 
differences in the implicit inclusion of age will dominate the compari-
son. Age should be either explicitly added or explicitly controlled for in 
such a comparison – ideally both. 

A similar discussion of age-dominated composite measures exists in 
the biological age literature (Levine, 2020). When chronological age was 
controlled for, early epigenetic clocks lost many of their significant as-
sociations with health outcomes (Ryan et al., 201A). Later epigenetic 
clocks addressed this issue by including biomarkers associated with 
adverse health outcomes independently of age (Levine et al., 2018). 

The QFI can also non-parametrically control for sex. Hsing sex- 
dependent reference populations ensures that the male and female in-
dividuals are treated the same. In Fig. 7c we found a crossing of male and 
female QFI as a function of age, so that males have a higher average QFI 
at later ages (above 85 years). This does not exhibit a mortality- 
morbidity paradox, since male mortality is somewhat higher than fe-
male at higher ages. Accordingly, we see slightly improved AHC for the 
sex-adjusted QFI. While there are real biological differences between 
male and female aging populations (Gordon and Hubbard, 2018), our 
finding raises the intriguing possibility that the mortality–morbidity 
paradox could be significantly reduced with proper control populations. 
This is worth further study with different aging populations using 
agnostic approaches to controlling for sex, such as the QFI. 

Individual health is high-dimensional. There are a vast number of 
individual characteristics of good or poor health. In contrast, pop-
ulations are often described by only a few characteristics such as just age 
and sex. Nevertheless, it is important to condition individual health on 
comparable populations. For binarized health variables this can be done 
with population-dependent cutpoints (Blodgett et al., 2017; Howlett 
et al., 201G; McPherson, 2017). For the QFI, we can explicitly choose the 
reference population. In this paper we have explored the role of age and 
sex, but any demographic differences in health and aging can be 
addressed with our approach. Furthermore, biases in the reference 
population due to selection or composition effects can be interrogated 
directly, since the reference population is explicitly defined. 

We have mostly used a fixed-age reference population of 80–85 year 
olds. This leads to a natural interpretability of the resulting QFI. We do 
not suggest that this is the only reference population that should be used, 
but it is well represented in many studies and the resulting QFI is highly 
interpretable. Even in cases where there is not a wide range of ages to 
choose from the QFI will still be effective as a predictive measure. 

By varying the fixed-age reference, we see in Fig. 5 that commonly 
reported maxima and minima of the FI (0.7 and 0.0, respectively) 
(Searle et al., 2008; Mitnitski et al., 2015) appear to be approached as we 
increase the age of the reference populations towards super-
centenarians. While that would gives an appealing interpretation of the 
QFI as your health quantile with respect to the “very old”, we do not yet 

have a large enough sample of the very old to explore that limit. 
We have developed a summary health measure, the quantile frailty 

index (QFI), from continuous biomarker or health measurements 
without any dichotomization. The QFI is both predictive of mortality, 
and interpretable as a frailty index. Different reference populations can 
be easily used to construct the QFI. We have investigated the role of age 
in the QFI, and demonstrate that the QFI effectively includes the non-age 
related aspects of considered biomarkers. The QFI can control for other 
important population state variables with appropriate reference 
populations. 

Ackno!ledgements 

ADR thanks the Natural Sciences and Engineering Research Council 
(NSERC) for an operating Grant (RGPIN 201A-05888). KR has opera-
tional funding from the Canadian Institutes of Health Research (PJT- 
15D11G) and personal support from the Dalhousie Medical Research 
Foundation as the Kathryn Allen Weldon Professor of Alzheimer 
Research. 

A""endi# A. $u""lementary data 

Supplementary data associated with this article can be found, in the 
online version, at httpsEFFdoi.orgF10.101DFj.mad.2021.111570. 

Re%erences 

Aguayo, G.A., Maillant, M.T., Donneau, A.F., Schritz, A., Stranges, S., Malisoux, L., 
Chioti, A., Guillaume, M., Muller, M., Witte, D.R., 2018. Comparative analysis of the 
association between 35 frailty scores and cardiovascular events, cancer, and total 
mortality in an elderly general population in EnglandE an observational study. PLoS 
Med. 15 (3), e1002, 5G3.  

Altman, D.G., Royston, P., 200D. The cost of dichotomising continuous variables. BMJ 
(Clin. Res. Ed.) 332 (75GA), 1080. 

Belsky, D.W., Moffitt, T.E., Cohen, A.A., Corcoran, D.L., Levine, M.E., Prinz, J.A., 
Schaefer, J., Sugden, K., Williams, B., Poulton, R., Caspi, A., 2018. Eleven telomere, 
epigenetic clock, and biomarker-composite quantifications of biological agingE do 
they measure the same thingI Am. J. Epidemiol. 187 (D), 1220–1230. 

Blodgett, J.M., Theou, O., Howlett, S.E., Rockwood, K., 2017. A frailty index from 
common clinical and laboratory tests predicts increased risk of death across the life 
course. GeroScience 3A (G), GG7–G55. 

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, M., 
Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., ManderPlas, J., Joly, A., 
Holt, B., Maroquaux, G., 2013. API design for machine learning softwareE experiences 
from the scikit-learn project. ECML PKDD WorkshopE Languages for Data Mining and 
Machine Learning 108–122. 

Canadian Study of Health and Aging Working Group, 1AAG. Canadian study of health and 
agingE study methods and prevalence of dementia. Can. Med. Assoc. J. 150 (D), 8AA. 

Centers for Disease Control and Prevention National Center for Health Statistics 
(Hpdated 201G). National health and nutrition examination survey data. httpEFF 
www.cdc.govFnchsFnhanes.htm. 

Cohen, J., 1A83. The cost of dichotomization. Appl. Psychol. Meas. 7 (3), 2GA–253. 
Dawson, N.M., Weiss, R., 2012. Dichotomizing continuous variables in statistical analysisE 

a practice to avoid. Med. Decis. Making 32 (2), 225–22D. 
Fedorov, M., Mannino, F., Zhang, R., 200A. Consequences of dichotomization. Pharm. 

Stat. 8 (1), 50–D1. 
Ferrucci, L., Levine, M.E., Kuo, P.L., Simonsick, E.M., 2018. Time and the metrics of 

aging. Circ. Res. 123 (7), 7G0–7GG. 
Fried, L.P., Tangen, C.M., Walston, J., Newman, A.B., Hirsch, C., Gottdiener, J., 

Seeman, T., Tracy, R., Kop, W.J., Burke, G., McBurnie, M.A., 2001. Frailty in older 
adultsE evidence for a phenotype. J. Gerontol. Ser. AE Biol. Sci. Med. Sci. 5D (3), 
M1GD–M157. 

Gordon, E., Hubbard, R., 2018. Physiological basis for sex differences in frailty. Curr. 
Opin. Physiol. D, 10–15. 

Horvath, S., 2013. DNA methylation age of human tissues and cell types. Genome Biol. 
1G, R115. 

Howlett, S.E., Rockwood, M., Mitnitski, A., Rockwood, K., 201G. Standard laboratory 
tests to identify older adults at increased risk of death. BMC Med. 12 (1). 

Jazwinski, S.M., Kim, S., 201A. Examination of the dimensions of biological age. Front. 
Genet. 10, 2D3. 

Juster, R.P., McEwen, B.S., Lupien, S.J., 2010. Allostatic load biomarkers of chronic 
stress and impact on health and cognition. Neurosci. Biobehav. Rev. 35 (1), 2–1D. 

Karczewski, K.J., Snyder, M.P., 2018. Integrative omics for health and disease. Nat. Rev. 
Genet. 1A (5), 2AA–310. 

Kulminski, A.M., Culminskaya, I.M., Hkraintseva, S.M., Arbeev, K.G., Land, K.C., 
Nashin, A.I., 2008. Sex-specific health deterioration and mortalityE the 
morbidity–mortality paradox over age and time. Exp. Gerontol. G3 (12), 1052–1057. 

#+ Stu,,in-s et al+                                                                                                                                                                                                                              



0HFKDQLVPV RI $JHLQJ DQG 'HYHORSPHQW ��� ������ ������

�

Levine, M.E., 2020. Assessment of epigenetic clocks as biomarkers of aging in basic and 
population research. J. Gerontol.E Ser. A 75 (3), GD3–GD5. 

Levine, M.E., Lu, A.T., Quach, A., Chen, B.H., Assimes, T.L., Bandinelli, S., Hou, L., 
Baccarelli, A.A., Stewart, J.D., Li, N., Whitsel, E.A., Wilson, J.G., Reiner, A.P., 
Aviv, A., Lohman, K., Liu, N., Ferrucci, L., Horvath, S., 2018. An epigenetic 
biomarker of aging for lifespan and healthspan. Aging 10 (G), 573–5A1. 

Li, O., Ploner, A., Wang, N., Magnusson, P.K., Reynolds, C., Finkel, D., Pedersen, N.L., 
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