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Abstract When people age their mortality rate

increases exponentially, following Gompertz’s law.

Even so, individuals do not die from old age. Instead,

they accumulate age-related illnesses and conditions and

so become increasingly vulnerable to death from various

external and internal stressors. As a measure of such

vulnerability, frailty can be quantified using the frailty

index (FI). Larger values of the FI are strongly associated

with mortality and other adverse health outcomes. This

association, and the insensitivity of the FI to the

particular health variables that are included in its

construction, makes it a powerful, convenient, and

increasingly popular integrative health measure. Still,

little is known about why the FI works so well. Our

group has recently developed a theoretical network

model of health deficits to better understand how

changes in health are captured by the FI. In our model,

health-related variables are represented by the nodes of a

complex network. The network has a scale-free shape or

‘‘topology’’: a few nodes have many connections with

other nodes, whereas most nodes have few connections.

These nodes can be in two states, either damaged or

undamaged. Transitions between damaged and non-

damaged states are governed by the stochastic environ-

ment of individual nodes. Changes in the degree of

damage of connected nodes change the local environ-

ment and make further damage more likely. Our model

shows how age-dependent acceleration of the FI and of

mortality emerges, even without specifying an age-

damage relationship or any other time-dependent param-

eter. We have also used our model to assess how

informative individual deficits are with respect to

mortality. We find that the information is larger for

nodes that are well connected than for nodes that are not.

The model supports the idea that aging occurs as an

emergent phenomenon, and not as a result of age-specific

programming. Instead, aging reflects how damage

propagates through a complex network of interconnected

elements.
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Introduction

While it is not surprising that the mortality rate

increases with age, it is striking that the increase is so

simple—the Gompertz law for older humans shows

that mortality increases exponentially with age
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(Gompertz 1825). This empirical law of aging was

widely employed by actuaries and demographers,

before it started to interest biogerontologists (Kirk-

wood 2015). It is intriguing that such a general

relationship between age and mortality emerges, since

the causes of death are typically quite varied. A

mechanistic explanation of the Gompertz law can be

made, e.g., using a reliability theory treatment of

redundant systems (Gavrilov and Gavrilova

2001, 2006; Milne 2008). However, while this

approach incorporates explicit time-dependent param-

eters it does not show how their time dependence

arises. Explicit time-dependent parameters are also

seen in many other models used to explain Gompertz’s

law (e.g., Strehler and Mildvan 1960; Arbeev et al.

2011; Avraam et al. 2013).

Even very old individuals do not just die from ‘‘old

age’’. Instead, over the course of their life they

accumulate multiple health problems that increase

their vulnerability to possible causes of death. Such

vulnerability accumulates differently for different

individuals, and the more vulnerable typically die

sooner than their coeval peers. To characterize this

heterogeneity in vulnerability, Vaupel et al. intro-

duced frailty (1979). As introduced, frailty was a fixed

factor across an individual’s life. They hypothesized

that any population consists of individuals with

different degrees of frailty, which was characterized

by a greater mortality rate compared with others of the

same age. This heterogeneity made it possible to

explain demographic observations such as late life

mortality plateaus (Yashin et al. 1985; Vaupel et al.

1998; Avraam et al. 2013).

We can alternatively consider heterogeneity in

health (as opposed to in mortality) within a population

of the same age (Mitnitski et al. 2016). This health

heterogeneity can be quantified as the individual

degree of health deficit accumulation, using health

related data that are readily available in epidemiolog-

ical and clinical databases (Mitnitski et al. 2001;

Rockwood and Mitnitski 2007). The health deficits

that are considered are defined broadly, as symptoms,

illnesses, functional limitations, or laboratory abnor-

malities that generally increase with age. Usually, the

deficits are dichotomized so that a deficit is scored as 1

and its absence as 0 (Mitnitski et al. 2001). For each

individual, these scores are added and then divided by

the number of deficits that were considered. The ratio

of actual to potential health deficits is called a frailty

index (FI). Databases with differing numbers and

types of variables can be used: the FI is simply the

fraction of actual deficits from the total possible

number in that database. A systematic procedure for

creating an FI has been validated (Searle et al. 2008;

Peña et al. 2014) and is used in a wide variety of

settings and across several databases (Clegg et al.

2013, 2016).

On average, across a large number of datasets the

number of health problems increases with age

(Mitnitski and Rockwood 2015). The FI increases

characteristically with age with an upwards curva-

ture, indicating an accelerating rate of the accumu-

lation of deficits with age (Mitnitski et al. 2001;

Kulminski et al. 2007) with a cross-sectional

exponential rate of 0.03 ± 0.01 and longitudinal

exponential rate of 0.045 ± 0.0075 (Mitnitski and

Rockwood 2016).

Despite these reasonably consistent mean changes,

there is great variability in how individuals accumu-

late deficits. In a large longitudinal health dataset,

individual FI scores indicated both health worsening

and health improvement (Mitnitski et al. 2012).

Despite individual variability, regular patterns were

deduced. The chance of moving from any one number

of deficits to another number is strongly conditioned

on the initial number of deficits. Change is typically

slow, and ‘‘jumps’’ (recovering from or accumulating

many deficits at once) are uncommon. A multistate

transition model was introduced that allowed changes

in all directions and that related the FI to mortality. It

had excellent fit to the observed data, though again

with age-dependent parameters (Mitnitski et al.

2006, 2013; Mitnitski and Rockwood 2015).

The variability that is shown between individuals

increases with age. Across databases, the statistical

distribution of the FI typically shows a skewed

histogram well represented by the Gamma density

function (Mitnitski et al. 2001; Rockwood et al. 2004),

similar to Vaupel’s theoretical assumption for his

frailty (Vaupel et al. 1979). The difference is that the FI

is a dynamic measure, readily available from individ-

ual health data. The FI changes in time, reflecting age-

related changes in individual health. In contrast,

Vaupel’s frailty was assumed to be a static factor over

an individual’s life course and it offered no guidance

about how it might be assayed at the individual level.

Since its introduction in 2001, the FI has been

calculated by many different groups, with estimates
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including more than 1.5 million people. The results

have been consistent across studies, even though

they have used different numbers of deficits (from

20 to 130), different study designs (cross-sectional

vs. longitudinal), and different data collection meth-

ods (e.g., clinical vs. self-reported data). The FI is a

popular health assessment tool because it strongly

associates with mortality and other adverse outcomes

(Rockwood and Mitnitski 2007), and because it is

robustly flexible. The FI stratifies people by their

risk of death, and the FI’s ability to stratify risk is

relatively insensitive to which particular deficits are

used (Rockwood et al. 2006). Much more important

to risk stratification by the FI is the number of

deficits that are included (Rockwood et al. 2006;

Zeng et al. 2015). This helps us to understand why

indicators of frailty with fewer deficits (e.g., the

frailty phenotype with five characteristics; Fried

et al. 2001) generally do not achieve the same

degree of precision in predicting mortality. Other

frailty measures can also be considered as special

cases of the FI (Theou et al. 2013a) and often are

specialized. For example, the frailty phenotype is

based on characteristics associated with physical

function. Other scales include neuro-physiological

characteristics (Rolfson et al. 2006) or psychometric

measurements (Gobbens et al. 2010). Even so, all of

these frailty scales behave similarly, showing an

increasing prevalence with age, an upward curvature

on a frailty vs age plot, and a strong association with

mortality risk (Theou et al. 2013a, 2014). The

association between health-derived frailty (the FI)

and mortality echoes Vaupel’s original definition of

frailty as an indicator of heterogeneity of individ-

ual’s mortality risks. Nevertheless, health-derived

frailty is useful since it can be applied to individuals,

using a wide variety of health data.

For these reasons, the FI approach has been used in

many settings. In a large-scale UK study, an electronic

version (the eFI) was calculated from routine elec-

tronic health records for almost one million individ-

uals aged 65? years (Clegg et al. 2016). The FI is also

a sensitive measure of health at younger ages (Rock-

wood et al. 2011). It has been used to assess the

relationship between the health and wealth of nations.

The average FI showed reciprocal relationships with

national GDP per capita: in the highest-income

countries of Europe, the prevalence of frailty was

lower than in European countries with smaller income

(Theou et al. 2013b). The FI can also characterize

socioeconomic inequalities in health within countries

(Hajizadeh et al. 2016). Other versions can be adapted

to special patient populations, such as systemic

sclerosis (Rockwood et al. 2014), intellectual disabil-

ity (Schoufour et al. 2014), kidney disease (Hubbard

et al. 2015), and HIV/AIDS (Guaraldi et al. 2015).

In most studies, the FI has been based on clinically

relevant deficits. As such, it may not be surprising that

it is linked to adverse outcomes and mortality.

However, the FI has shown similar properties when

calculated from routinely available laboratory tests

(Howlett et al. 2014). Moreover, a biomarker based FI,

compiled from 40 biomarkers of cellular aging,

inflammation, haematology and immunosenescence

also showed a strong association with mortality even

when most of the individual biomarkers showed no or

only weakly statistically significant associations with

death (Mitnitski et al. 2015).

The FI has similar properties in animal models. A

frailty index in mice was first calculated by Howlett

and colleagues (Parks et al. 2012) using a range of

health-related characteristics (n = 31) including the

level of activity, hemodynamics measures, body

composition and basic metabolic status. In a later

iteration, a simplified noninvasive FI for mice was

developed using clinical signs of age-related deficits

(Whitehead et al. 2014). Striking similarities were

found between the clinical frailty index in mice and in

humans (Whitehead et al. 2014). In particular, after the

age has been scaled by species norms the age-

dependent FI trajectories virtually coincide between

mice and humans. A recent paper showed that FI

scores were associated with deficits from the molec-

ular/cellular, to tissue, to organ level function (Mogh-

tadaei et al. 2016).

The FI is a general and effective integrative health

measure, but little is known about the basis of its

consistency. The complexity of aging makes under-

standing this question daunting. However, the gener-

alizability of the FI, its robustness to the number,

choice, and the level (biochemical, cellular, organ,

functional, or clinical) of deficits within the FI, and

finally the similarity between human and murine

models—all indicate that a generic systems biology

approach could be used to approach the question of

how the FI works as a systemic indicator of aging

(Kulminski et al. 2007). Mathematical modeling lies at

the core of this approach.
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Objective

Our objective is to review in some detail a dynamical

network model recently developed by our group

(Taneja et al. 2016; Farrell et al. 2016). This is an

extremely simplified approach that nevertheless helps

us to understand mechanistically why and how deficits

may accumulate, and the basis by which common

characteristics of aging can arise from that accumu-

lation. In particular, the model has no time-dependent

parameters and so illustrates how Gompertz’s law can

arise holistically. This is useful in addressing the

question of whether programmed aging (which, of

course, implies time-dependent parameters) is neces-

sary to explain the Gompertz law and other patterns of

aging.

The model

General

Our model (Taneja et al. 2016; Farrell et al. 2016)

links mortality with deficit accumulation through a

complex network of interacting nodes, where the

nodes, when damaged, represent individual deficits.

This model is stochastic and, while simplified, cannot

be solved by hand. Rather, our mathematical model

allows us to computationally generate large stochastic

sample populations that we can analyze in traditional

ways. Alternatively, we can use these model popula-

tions to develop new analysis tools. For example, we

do this to understand differences in the informative-

ness of individual deficits that make up the FI. We also

use the model to explore the possible origin of the

empirical maximum of the FI, which is no more than

0.7 for[99% of individuals (Rockwood and Mitnitski

2006; Bennett et al. 2013).

A network of interacting nodes

We have developed a simplified model of the human

organism as a network of interacting nodes (Fig. 1)

(Taneja et al. 2016; Farrell et al. 2016). Each

individual is represented by a distinct network with

N nodes, where N is generally much larger than the

number of nodes n that make up the frailty index. Each

node i 2 f1; 2; . . .;Ng represents a possible deficit and

can be in one of two states for every individual: either

healthy and undamaged (with di = 0, where the deficit

is absent), or present and damaged (with di = 1, where

the deficit is present). The nodes are not evenly

interconnected—some have more connections than

others. We characterize the connectivity of the

network by a degree distribution P(k) * k-a, where

P(k) is the probability of a node having a degree k. The

degree of a node is simply the number of connections

the node has with other nodes, so we must have k 2
f1; 2; . . .;N � 1g since every node is connected to the

rest of the network. For simplicity we use a commonly

observed scale-free distribution, with a characteristic

exponent a (Barabasi and Albert 1999). Such a

distribution approximates the situation in which a

relatively small number of nodes (‘‘hubs’’) are well

connected, whereas most nodes have relatively few

connections.

To be clear, not all nodes are or need be deficits—

deficits arise when nodes are in a damaged state. Each

node has a local environment defined by the damage

state of its connected nodes. In analogy to the FI, we

define the local frailty fi of the ith node as the fraction

of damaged to the possible deficits on connected

nodes:

Fig. 1 Schematic representation of an individual’s health as a

network of N = 20 nodes (circles), that are connected to each

other (black lines). Two mortality nodes (red circles) are the

most highly connected, four frailty nodes (green) are next most

highly connected. (Color figure online)
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fi ¼
Xconnected

j

dj=ki; ð1Þ

where ki is the number of connected nodes. The local

frailty (1) enhances the damage rate and reduces the

repair rate of the ith node with an exponential

dependence (Farrell et al. 2016):

Cþ ¼ C0 expðcþfiÞ; ð2aÞ

C� ¼ C0

R
expð�c�fiÞ: ð2bÞ

Exponential functions are used in many applica-

tions in statistical physics and chemistry to represent

the kinetics of complex changes (see also the classic

work on aging and mortality by Strehler and Mildvan

(1960)). Parameters of the model, such as C0, R, c?,

and c-, are found from fitting population mortality

rates, the average FI trajectory, and the FI distribution

at different ages (Taneja et al. 2016; Farrell et al.

2016). We find that repair (R and c-) is not significant

(Farrell et al. 2016), while the overall damage rate (C0)

is tightly constrained by the increase of the FI at early

ages. The c? parameter, which characterizes how

strongly a node interacts with its neighbors through its

local frailty, is important. This parameter leads to

exponentially increasing damage rates that are depen-

dent on the state of the network.

Individual mortality results from the damage of the

two most connected nodes, reflecting our intuition that

mortality is impacted by many factors (Farrell et al.

2016). While we have investigated other numbers of

mortality nodes (Taneja et al. 2016) we found that two

mortality nodes provide the best fit with the data

(Farrell et al. 2016). We note that while using network

nodes for a mortality condition works and is conve-

nient, we should not think of mortality as arising

simply from one or two deficits. We can simply say

that our mortality condition is sufficient to recover

existing phenomenology.

We assess the ‘‘health’’ of an individual network

with n frailty nodes, which are the most highly

connected nodes that are not also mortality nodes

(Fig. 1). By insisting that frailty and mortality nodes

are distinct, any connections we find between frailty

and mortality must come from the network interac-

tions. Because frailty nodes are highly connected, they

should provide an assessment of the overall health of

the network even though we use very few frailty nodes

n compared to the number of nodes in the network

N. This is analogous to how the observational FI

provides a good measure of human health (Clegg et al.

2013), while including relatively few possible deficits

compared to e.g., the size of the human genome or

transcriptome (Pan et al. 2008; Mercer et al. 2011).

The frailty index (FI) is the fraction of damaged

frailty nodes and has a value F, where

F ¼
X

i

di=n: ð3Þ

Initially, at age t = 0, all nodes are undamaged

(di = 0) and all fi and F = 0. Transitions between

undamaged and damaged states of each node occur

randomly under the influence of the external environ-

ment. With the passage of time, as more nodes became

randomly damaged the local frailties increase and so

the chance of further damage increases (through

Eq. 2a) while the chance of recovery diminishes

(through Eq. 2b).

We generated a population of a large number (up to

107) of ‘‘individuals’’ each of which had N = 10,000

nodes. An exact computational implementation of

fixed rate stochastic processes was used [variously

called SSA, or the Gillespie algorithm, or kinetic

Monte Carlo, see (Farrell et al. 2016) for details]. The

results below are presented with the following

parameters: a = 2.27, c?=10.27, c- = 6.5,

R = 1.5,\k[= 4, and C0 = 0.00113/year (Farrell

et al. 2016).

Figure 2a shows the mortality rate as a function of

age (Farrell et al. 2016), overlaid with data obtained

from US statistics (Arias 2014). After age about 40

the calculated mortality rate corresponds well with

the observational data. Figure 2b shows the age-

specific trajectory of the average FI (Farrell et al.

2016), also in a good agreement with observations

(Mitnitski et al. 2013). The observational changes in

the distribution of the FI with age are shown in

Fig. 3a, following (Gu et al. 2009). The model shows

similar patterns (Fig. 3b) although in order to obtain

the frailty limit observed in panel a, we had to

introduce a false-negative rate q with value q = 0.3

(Farrell et al. 2016). This false negative rate reflects

the finite sensitivity with respect to mortality of

individual deficits. The choice of this parameter does

not affect the ability of the model to fit the age-

specific FI trajectory and the Gompertz law (Taneja

et al. 2016; Farrell et al. 2016).
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Mutual information of FI and mortality

The FI and age are both informative to the human

health (Mitnitski et al. 2016). How the knowledge of

these variables helps to predict death can be quantified

using information theory (Steinsaltz et al. 2012; Blokh

and Stambler 2016). The relationships between age,

the FI and mortality can be characterized using

Shannon entropy, which is a quantitative measure of

uncertainty in a random variable (Shannon 1948). Let

p(a) be the probability distribution of the individual

age-at-death a. The Shannon entropy S(A) is given by

S Að Þ ¼ �
X

a

p að Þ log p að Þ; ð4Þ

where the capital A on the left-side of the equation

indicates that the age-at-death has been averaged over

by the sum. The entropy is larger for broader

distributions, which correspond to larger uncertainty.

For those who survived to specific age t, the entropy of

the conditional age-at-death distribution S(A|t) makes

it possible to quantify the information added to the

unconditional distribution by the age t (Eq. 4). Infor-

mation increases as the entropy (uncertainty)

decreases. Since the age t constrains the distribution

(a) (b)

Fig. 2 a Mortality rate versus age. Observational data (black

squares) is from U.S. population mortality statistics (Arias

2014) and model data is shown by the solid blue line (with blue

circles). b Average FI versus age. Observational FI data (black

squares) is from the CSHA (Mitnitski et al. 2013). Model data is

shown by the solid blue line (with blue circles). Default parameters

were used for the model in both panels, including q = 0.3.

Figure is adapted from (Farrell et al. 2016). (Color figure online)

(a) (b)

Fig. 3 Distributions of the FI for different ages. Age ranges are

indicated by the legend, and are the same in both panels.

a Observational distributions from Chinese population data (Gu

et al. 2009). Note the FI limit around 0.8. b Model distributions

with a false negative rate, i.e., q = 0.3. The 99th percentile of

the population of 100–105 years has max FI = 0.78. Figure is

adapted from (Farrell et al. 2016). (Color figure online)
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of death ages, the conditional entropy S(A|t) will have

a lower value than the unconditioned entropy. The

reduction in uncertainty by knowing age t can be found

by the difference between unconditional and condi-

tional entropies, which is a measure of how the

uncertainty in the death age is reduced by knowing the

age t. This difference is called the mutual information

between the age-at-death A and age t:

I A; tð Þ ¼ S Að Þ � S Ajtð Þ: ð5Þ

The mutual information of two variables quantifies

how knowing one variable reduces the uncertainty

in the other variable. This can also be interpreted as

a correlation between the two variables. Using

mutual information, we can characterize how much

information knowing a person’s age adds to esti-

mating their risk of dying. Likewise, we can see

how much information the FI adds to assessing the

risk of death, and most importantly, we can

calculate how much information one adds when

the other is known.

To provide a measure of the predictive value of the

FI in respect to individual mortality, we calculated the

mutual information between the age-at-death and

specific values of the FI, between age-at-death and

all values of the FI, and between age-at death and all

deficit values of individual nodes. For example, the

mutual information between the age-at-death and all

values of FI at a given age t is the information gained

by knowing the FI at a given age t:

I A;Fjtð Þ ¼ S Ajtð Þ � S AjF; tð Þ; ð6Þ

where the capital F indicates that we have averaged

over all values of F at age t (Farrell et al. 2016).

The information gained by including a specific

range of FI values at a given age can be compared to

knowing age alone is shown in Fig. 4. Intriguingly,

larger F are most informative for younger individu-

als—and can exceed the information gained from

knowing age alone (Farrell et al. 2016). This is

because larger FI values indicate much earlier age-at-

death than the young ages would indicate. Also, the

information can become negative for very old indi-

viduals who have a very low FI. This is because they

will live longer than most people of the same age (in

virtue of having a low FI) though they are at an age

when average mortality is high and life expectancy is

short. In consequence, their low FI indicates more

uncertainty in their age-at-death than their age alone

would indicate.

If we average the information gained over the

different values of the FI, then we obtain the mutual

information of FI with the age-at-death distribution—

conditioned on the current age (Fig. 5a). This average

mutual information is always positive, indicating that

uncertainty is always decreased on average by know-

ing the FI. The peak around age 80 indicates the age at

which the FI is most predictive on average. The FI is

less predictive at younger ages because most of the

population has low values of FI. It is less predictive at

older ages because there is less uncertainty in the age-

at-death to begin with. Significantly, the mutual

information provided by the FI increases with the

number of possible deficits n included in the FI. The

more nodes that are used, the higher is the information.

By plotting the maximum mutual information (ob-

served close to age 80 years in Fig. 5a) versus n, we

see that the information increases approximately

logarithmically with n (note the logarithmic scale in

Fig. 5b). This means that by doubling the number of

possible deficits we increase the maximum informa-

tion by a fixed amount (Farrell et al. 2016). The

implication of this increase is that the same

Fig. 4 Specific mutual information I(A;f|t) = S(A|t) - -

S(A|f,t) for distributions conditional on both age and the FI.

This is the information gained by knowing a specific range of the

FI, as indicated in the legend, versus just knowing their age. The

negative values of I(A;f|t) for older individuals with low frailties

indicates that they have wider (normalized) death-age distribu-

tions compared to the population average at that age. Figure is

adapted from (Farrell et al. 2016). The data is from our network

model
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information at age 80 with n = 4 deficits can be

obtained much earlier (at age 40) with n = 64 deficits.

Discussion

General

Our computational network model rests upon a few key

qualitative assumptions: (1) Individual health can be

approximated by a network of interconnected nodes

(representing possible deficits) each of which can be in

one of the two states (damaged or undamaged); (2) The

evolution of the state of the network is governed by

continuously acting stochastic perturbations (represent-

ing the environment) that can switch the state of each

node between undamaged to damaged; (3) The transi-

tions of individual nodes are also affected by the states of

the ‘‘neighboring’’ (connected) nodes, such that dam-

aged neighbours hasten damage of a node; (4) The

network architecture, or how nodes are connected with

other nodes, varies greatly between nodes and is

approximated by a scale-free power-law degree distri-

bution. This asymmetry of the degree distribution

reflects our intuition that some biological or clinical

characteristics (e.g., basic or instrumental activities of

daily living, or gait speed) are related to many other

variables whereas most variables have only a small

number of such connections (e.g., a swollen knee or a

mole); (5) The two nodes with the highest number of

connections are considered to be mortality nodes: death

is caused by their damage. Since they are well

connected, this leads to the overall state of the network

determining mortality rates rather than any small subset

of the nodes.

Our model is very simple and reflects very general

properties of the organism: its network structure, the

asymmetry of this network, the role of the environ-

ment, and the cumulative effect of damage. Local

damage, i.e., the damage of individual nodes, acceler-

ates through the network because damage of a one node

facilitates the damage of all other nodes linked with

that one. The results of the computational simulation of

our model are in a good agreement with the observa-

tional data (Taneja et al. 2016; Farrell et al. 2016). For

example, the model recovers the Gompertz law of

mortality, the accelerated accumulation of deficits with

age, and the broadening of the FI’s distribution with

age. Even so, we needed an additional assumption in

order to satisfy the observation that FImax\ 1 (Farrell

et al. 2016); (6) a false negative rate (of about 0.3)

allowed us to fit the observed frailty limit (Fig. 3).

Why do old people tend to die sooner than young

people with the same FI?

While our network model allows us to represent

observed patterns in mortality and the accumulation of

deficits, it also helps us to address other important but

poorly understood questions. For example, why does

(a) (b)

Fig. 5 a Mutual information conditioned on age I(A;F|t) versus

age. This is the specific mutual information averaged over the

frailties f. As indicated by the legend, the information increases

with increasing number of possible deficits n included in the FI.

Figure is adapted from (Farrell et al. 2016). b The maximum

information from (a) versus number of possible deficits (nodes)

used to calculate the FI. Note the logarithmic scale for the

number of possible deficits, n. The data is from our network

model
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age remain a significant contributor to mortality risk in

models that include the FI? One way of answering this

question is to consider the mutual information between

age-of-death and the FI, which is maximal around

80 years of age. This allows us to turn the question

around and ask, instead, when is the FI a useful addition

to knowing a person’s age? The answer is that very

young individuals typically are healthy, with low FI, so

the FI provides little additional information on aver-

age. Very old individuals will die soon, and so while

the FI helps to stratify their ages-at-death, it does this

within a narrow range. For adults’ age 70–90 years old,

the FI provides the most information on age-at-death

on average. The FI also provides more information for

younger individuals with a high FI.

For individuals with the lowest FI scores (FI = 0,

often referred to as the ‘‘zero state’’), we can ask why

older adults are more likely to die than are younger

ones (Mitnitski et al. 2006; Mitnitski and Rockwood

2015)? The network model also shows that death

typically occurs much later in younger individuals

with lower FIs than in those who are older who have

the same FI (Farrell et al. 2016). In both cases, we see

that the set of variables used to construct the FI must

be incomplete, i.e., that the persisting value of age in

predictive models reflects some unknown factors that

are not captured by the FI. In the model, mortality

occurs only due to the accumulation of damaged

nodes (Farrell et al. 2016). This implies that the FI

does not encapsulate the full extent of damage in

individuals. Mortality can occur spontaneously in the

network model, much like the sudden death of a

young athlete due to an inherited ventricular arrhyth-

mia or a subarachnoid hemorrhage. We also note that

since frailty and mortality nodes do not have identical

connections with other nodes in the network, damage

in the rest of the network can affect them differently.

Age is a convenient individual variable that gives us

information about the network damage that is not

included in the FI. Since knowing an individual’s age

is ‘‘free’’ while the FI requires assessment, we can

simply say that the FI complements rather than

replaces age.

Damage accumulation versus genetic

programming

Our network model illuminates a long-standing debate

about the causes of aging: damage accumulation

versus age-specific genetic programming (Gavrilov

and Gavrilova 2002; Kowald and Kirkwood 2016;

Young et al. 2016). A deliberate and important feature

of our model is the absence of any time-dependent

parameters. The only extrinsic factor in the model is

the environment, through the random switching of the

states of the nodes from undamaged to damaged and

back. The absence of age-related variables supports

the idea that aging can be explained simply as the

accumulation of damage, and does not need to be

programmed. In this context, we take programmed to

mean age-specific failure or damage of e.g., genetic

origin. While we cannot assert that age-specific

damage is impossible in principle, our simple network

model shows that deficit accumulation alone, through

the propagation of damage in a network of intercon-

nected elements, can explain the major patterns

observed in human aging. We believe that aging

emerges as the propagation of damage through a

complex network of interconnected elements.

Relationship between model deficits

and observational human health deficits

One might straight-forwardly think of our model

nodes as physiological or functional variables that

have specific thresholds. For functional variables like

walking speed these thresholds may be one sided,

where damage corresponds to a range of limitations.

Alternately, nodes might be the risk factors of Manton

and Yashin (Yashin et al. 2012; Manton et al. 1994), so

that damage corresponds to deviations on either side of

an optimal trajectory that might be time-dependent

(Yashin et al. 2012). In our model, only some of our

deficits directly affect mortality nodes, whereas all of

them also affect the state of other nodes. This is in

contrast to Yashin’s quadratic hazards model, where

all deficits directly affect mortality rates but not each

other (Yashin et al. 2012).

We need not identify nodes of our model with

specific physiological or functional variables. We

might think of high-level nodes as representing

combinations of variables, much as functional vari-

ables such as balance, mental function, or gait speed

represent many physiological aspects of the body.

Conversely, we might think of multiple low-level

nodes representing a single physiological variable. In

this way, we could have a graded response to

damage—with higher damage levels of a given
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physiological variable corresponding to more low-

level damaged nodes. While we thus have flexibility in

how we think of the model nodes, we note that

previous studies of non-binarized deficits did not find

significant improvements in predicting mortality

(Peña et al. 2014)

This flexibility of representation of our network

model begs the question of how we could use

observational data to test the assumed scale-free

interconnections of our network? We believe that

information theory, and in particular the spectrum of

information of individual deficits, provides a simple

but powerful tool that is sensitive to the details of the

network. This remains an important challenge for

future work. It also presents an opportunity, since

greater understanding of the interactions between

observational nodes is likely to improve our funda-

mental understanding of the aging process.

Informativeness of deficits depend on their

connectivity degree

The model confirms our intuition that possible deficits

with more connections are more informative. Inter-

estingly, the relationship between the information per

deficit and the average deficit degree, the ‘‘information

spectrum’’, is approximately linear for our best-fit

network exponent a (describing the distribution of

connections between nodes) (Fig. 6). This is intu-

itively appealing, since linearity indicates that every

connection provides approximately the same amount

of information. Nevertheless, for other values of a the

relationship is more like a power-law (Farrell et al.

2016). Directly determining the network exponent a
from observational data would allow us to examine the

information spectrum and compare it to the a obtained

from a fit to the mortality and FI phenomenology.

Implications of the frailty limit

With our network model, we were only able to recover

the observational frailty limit (FI\ 1) with a finite

false-negative rate (q = 0.3) (Farrell et al. 2016). We

justified this by similar magnitude finite sensitivities

reported in clinical diagnosis, which contrasts with the

otherwise perfect association of model deficits with

increasing mortality. We can also think of the false-

negative rate as representing the contribution of sub-

clinical damage to both mortality and further network

damage. Since such a false-negative rate will depend

on the particular deficit, we would expect that the

resulting frailty limit will depend upon the collection

of particular deficits—i.e., it will vary from study to

study. Indeed, this variation of the frailty limit

between studies is observed (Farrell et al. 2016).

Nevertheless, an alternative picture of the observed

frailty limit is that it represents the limiting burden of

the organism to a cumulative degree of insult. If we

posit that different deficits provide differing amounts

of burden, then we could also explain the ‘‘non-

universal’’ character of the frailty limit between

studies. It may be possible that modifications to the

network model, perhaps through a different mortality

rule, could avoid the false-negative rate we imposed to

recover the frailty limit (Farrell et al. 2016) while still

retaining the other aging phenomenology.

Frailty instrument based on more deficits predict

mortality better than those with fewer deficits

The FI predicts mortality better than other frailty

assessment instruments (Theou et al. 2013a, 2014).

The difference between them lies in the number of

possible deficits used. A typical FI has an order of

Fig. 6 The ‘‘information spectrum’’ of the network. The mutual

information per node (possible deficit) for individuals at age 80

(when the mutual information of the FI is maximal) versus the

average degree of connection of the node. Different values of the

network scale-free exponent a are indicated by the legend.

a = 2.27 (blue points) correspond to the best fit with the

observational data. In all cases the information increases with

deficit degree. For a = 2.27 the increase is approximately linear

with degree. The inset shows the same data on log–log scale,

showing the approximately power-law behavior at smaller

degrees. (Color figure online)
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magnitude more items than many other frailty mea-

sures (e.g., 40–50 in the FI vs. 5 in the Fried

phenotype). As shown in Fig. 5b, the predictive value

of the model FI increases monotonically with the

number of possible deficits included in the FI. This

gives theoretical support to the empirical evidence,

and also supports our intuition to include all available

relevant health deficits in the FI (Searle et al. 2008). It

is increasingly important to realize the flexibility of

the FI. The advent of electronic health records (EHRs),

such as the electronic FI (eFI) being employed in the

National Health Service in England and Wales, will

make it possible to routinely calculate FIs with the

deficits at hand (Clegg et al. 2016).

Our naive expectation had been that including

many deficits would eventually dilute or diminish the

value of the FI. However even with as many as 8000

deficits in the FI, which is essentially the entire model

network, our model shows no evidence of dilution

(Farrell et al. 2016). No dilution has been seen in

observational studies either (Song et al. 2014; Rock-

wood et al. 2007). Why not? The answer appears to be

that the FI probes the entire network of individual

health, and that any additional deficits provides better

coverage of that network. There does not appear to be

any advantage to avoid using readily available health-

assessment items in a frailty measure (Velanovich

et al. 2013; Louwers et al. 2016).

Complex networks in biomedical applications

and gerontology

The FI has been a useful empirical health assessment

tool. Now, our model provides strong theoretical

support for the FI. The network model is useful in

representing health of individuals, in stratifying people

by the risk of mortality and other adverse outcomes, but

also in understanding why including more rather than

fewer items in the FI gives a better prediction of

mortality. Health deficits are interdependent; each of

them is linked with many others, and each of them

contains information about many others (Mitnitski

et al. 2016). This led us to suggest a network approach,

which allowed us to employ powerful mathematical

methods that had been used for investigating complex

network dynamics in physics, biology, social media,

and communication (Watts and Strogatz 1998).

While there have been many applications of

networks to biological systems (e.g., Promislow

2004; Budovsky et al. 2007; Wolfson et al. 2009;

Hidalgo et al. 2009; Tacutu et al. 2010; Vural et al.

2015; Wang et al. 2015; Ghiassian et al. 2016; Yanai

et al. 2016), we are aware of only one other network

model of aging (Vural et al. 2014). Their network

model fitted observed mortality patterns in six differ-

ent non-human organisms. The important difference

with our model is that Vural et al. (2014) imposed

mortality when a threshold on the fraction of damaged

nodes was passed. While they did not explore FI

phenomenology, we have shown that such a threshold

mortality does not recover the observed distributions

of FI (Farrell et al. 2016).

Perspectives

Our model allows researchers to conduct computer

experiments (in silico). These can be invaluable to

develop new analysis tools such as information

measures, when experiments using human data are

impossible or where there is a lack of frequently

observed longitudinal data. Our model allows the

generation of large amounts of high-quality compre-

hensive data on millions of ‘‘individuals’’, each of

which is represented by up to 10,000 nodes. The

timing of every deficit change is recorded for every

individual in our model population. This data can be

used to investigate individual longitudinal trajectories

which can then be compared with sparse longitudinal

observations. This presents us with the ability to

explore how sparse sampling affects the analysis of

frailty trajectories. For example, our model shows

little sensitivity to the deficit repair rate, which implies

that deficit repair may not affect longevity statistics or

the overall FI (Farrell et al. 2016). Due to the

possibility of rapid re-damage after deficit repair, the

investigation of deficit repair is likely to be con-

founded by sparse frailty trajectories. Such effects can

be characterized with our network model, so that we

can more reliably estimate repair rates from sparse

observational data.

Computational models could also take into account

changes in relationships between health deficits. These

might result from, for example, changes associated

with stress-response or with resilience paradigms

(Rattan 2013; Ukraintseva et al. 2016). In this way, a

network model could let us explore how such changes

might influence individual trajectories of the FI and

mortality (Yashin et al. 1985, 2012). This could
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provide a way of understanding how the same allele

can have beneficial or harmful effects in varying

circumstances (Kulminski et al. 2016). Similarly, our

network model will also allow us to study how local

damage of various magnitudes would change the rates

of deficit accumulation and patterns of mortality.

While understanding local damage is important, it is

not experimentally accessible for human populations.

Computational models allow in silico experimentation

to allow us to characterize damage phenotypes and

complement and extend our analysis of empirical

(clinical) data.

Conclusion

Aging and frailty are closely intertwined. Frail older

adults are at a greater risk of accelerated decline in

many aspects of function. The many characteristics

associated with frailty can characterize or define the

aging process, even without ‘‘consensus concerning

the physiological/biological pathways associated

with…frailty’’ (Fulop et al. 2010). Our goal has not

been to build such a consensus. Rather we have

embraced aging and frailty within the dynamical

properties of a complex network, like that of the

human organism.
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