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We predict late-time spatial anisotropy for scalar systems with anisotropic surface tension undergoing
dissipative quenches below their critical temperature. Spatial anisotropy is confirmed numerically for two-
dimensional Ising models with critical and off-critical quenches and with both conserved and nonconserved
dynamics. Due to the nonzero anisotropy, expected in all lattice systems, correlation functions in the scaling
limit depend on temperature, microscopic interactions, dynamics, disorder, and frustration.
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Most theoretical, numerical, and experimental treatments
of nonequilibrium phase-ordering kinetics assume that as-
ymptotic correlations are spatially isotropic in stress-free
systems quenched from disordered initial conditions into the
ordered phase@1,2#. Numerical measurements in simple
Ising models have supported this assumption@3,4#, despite
several qualitative reports to the contrary@5,6#. It has not
been clear whether Potts models@7# and frustrated Ising
models @4#, where anisotropy effects have been measured,
are typical or are special cases. Indeed, without a demonstra-
tion that anisotropy isexpectedasymptotically it has been
possible to discount measured anisotropy as being a transient
effect ~see, e.g.,@8#!.

It is reasonable but not obvious to expect anisotropiccor-
relations in phase ordering. The two-dimensional~2D! Ising
model belowTc , for example, is spatially anisotropic at ar-
bitrarily large scales in equilibrium correlations@9#, in the
resulting surface tension@10#, and hence in the interface dy-
namics@11#. In fact, we demonstrate below that spatial an-
isotropy isgeneric in scalar systems for quenches into an
ordered phase with an anisotropic surface tension.

This asymptotic anisotropy leads to many universality
classes of phase-ordering correlations, each parametrized by

the functional angle dependence of the effective surface ten-
sion as well as, for nonconserved dynamics, by details of the
dynamics.

For definiteness, we consider a coarse-grained scalar or-
der parameter,f, in the continuum limit, and define an ef-
fective free energy in momentum space
F@$f%#5*ddk@(k21Dk)fkf2k1Vk#, where Vk@$f%# is
the Fourier transform of local potential terms andDk in-
cludes anisotropic higher-order gradients. We define an
angle dependent free-energy densitye(n) by restricting the
integral inF to momenta in a given directionn and averag-
ing ~denoted by angle brackets! over the random initial con-
ditions. To do the restricted momentum integral in^F&, at
late enough times for domain walls to be well defined, we
use the anisotropic Porod law for the structure factor
S(k)5^fkf2k& in general dimensiond ~generalizing@12#!:

S~k!.2d12pd21Ak2~d11!P~k/k!, ~1!

which holds forL21!uku!j(n)21, whereL(t) is the char-
acteristic growing length scale of the system andj(n) is the
domain wall width for domain walls with normal orientation
n5k/k. A(t);L21 is the average area density of domain
wall andP(n) is the angle distribution function of domain
wall orientation. We find*Electronic address: a.rutenberg1@physics.oxford.ac.uk
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e~n!5As~n!P~n!, ~2!

where the leadingk2 and potential terms make isotropic con-
tributions tos(n), whileDk makes anisotropic contributions
both directly and throughj(n)21. From Eq.~2! we identify
s(n) as the effective angle dependent surface tension for
domain walls with normal directionn @13#.

Now consider a dissipative quench toT50, with no ther-
mal noise. The dynamics will be given by
ḟk52G(k)dF/df2k , where the dot indicates a time de-
rivative. We assume leading behavior ofG5const, which
corresponds to nonconserved dynamics, orG5G2k

2, which
corresponds to conserved dynamics@14#. The time rate of
change of the energy density is then simply@15#

ė~n!5E dk kd21^dF/dfkḟk&

52E dk kd21G21^ḟkḟ2k&, ~3!

wherek[kn. We have used the dynamics off to replace
the functional derivative of the free energy so that the result-
ing expression forė(n) has no explicit dependence on
F@$f%# or, hence, ons(n).

Imposing isotropic correlations generally leads to a con-
tradiction if the surface tension is anisotropic— different
anisotropies in Eqs.~2! and ~3!. This implies thatthe corre-
lations are anisotropic at arbitrarily late times.

It is easy to see that anisotropic correlations are needed to
have consistency between the two expressions for the energy
density. Apart from anisotropic correlations, the anisotropy
of e(n) in Eq. ~2! is determined by the statics, through
s(n). On the other hand, the anisotropy ofė(n) in Eq. ~3! is
determined by the dynamics, throughG(k), in addition to
possible contributions by the effective UV cutoffj(n)21.
Sinces andG are independent, the anisotropies of Eqs.~2!
and ~3! will not generally be equal unless anisotropic corre-
lations make up the difference. For more general forms of
the free energyF@$f%# and dynamicsG(k) the same argu-
ment applies, as long as the energy density is represented by
Eqs.~2! and ~3!.

The renormalization-group~RG! approach to phase order-
ing @16# is easily generalized to include anisotropy. The only
change is to note that any anisotropy of eitherF@$f%# or
G(k) will be renormalized by microscopic details.~An illus-
tration of this renormalization is the temperature dependence
of the effective surface tension@10#.! The demonstration that
thermal noise will be asymptotically irrelevant for quenches
below Tc will still apply, with the caveat that the effective
T50 dynamics will include the effective surface tension at
the quench temperature. We then apply our above argument
that predicts anisotropy with noise free dynamics. As a re-
sult, we expect anisotropy for all scalar quenches belowTc
@17#.

The surface tension will depend on temperature, disorder,
and the details of the local interactions in the system, but will
be independent of the dynamics at late times. Since the sur-
face tension always enters into Eq.~2!, it will affect aniso-
tropic correlations in the scaling limit.

What about the dynamics? The RG approach@16# shows
thatG(k) will only be renormalized analytically, i.e., anisot-
ropy will only enter atO(k4) and higher. For conserved
dynamics, whereG(k)5k2 to leading order@14#, anisotropic
contributions are subdominant in Eq.~3! since the integral
converges in the UV@15#. Thus neither the anisotropy of
G(k) nor the anisotropy of the core scalej(n) will affect
ė(n) through Eq.~3!. For conserved dynamics then, the an-
isotropy of the surface tension alone~an equilibrium prop-
erty! determines the anisotropy of the correlations.

With nonconserved dynamics, whereG5const to leading
order, the UV regime dominates the energy-dissipation inte-
gral ~3! @15# and bothG(k) andj(n) make anisotropic con-
tributions to ė(n). As a result, anisotropy will in general
depend on the details of the microscopic dynamics, even
including global conservation laws that are ‘‘irrelevant’’@16#
in terms of growth laws. In principle the anisotropy of
G(k) could then be renormalized to compensates(n); in
practice we numerically find anisotropy in all cases.

For the remainder of this paper, we explore 2D Ising
models with nearest-neighbor interactions on a periodic
square lattice under quenches from random initial conditions.
For a system defined on a lattice, anisotropies will be present
in the surface tension belowTc , because lattice interactions
are not rotationally invariant. Our argument then implies an-
isotropic correlations in the scaling limit. Indeed, we find
anisotropic correlations quite generally — for a variety of
temperatures belowTc , of initial magnetizations, and for all
of globally conserved, nonconserved, and locally conserved
dynamics. These anisotropies do not decrease at late times,
as would be expected for transient effects introduced by the
dynamics at earlier times.

We measure the normalized correlationsC(r ,t)
5@^f(r )f(0)&2^f&2]/ @^f(01)f(0)&2^f&2], which
ranges from 1 at short distances to 0 at infinity@13#. The
anisotropic length scaleL(n,t) of a system is defined by the
scale in directionn at whichC50.5 for nonconserved dy-
namics, and by the first zero ofC for conserved dynamics.
We scale correlations in all directions by the length scale in
the diagonal direction. A natural measure of anisotropy is
x5(Lmax/Lmin21)/(A221), whereLmax is the maximum
length scale at a given time andLmin is the minimum, and so
x runs from 0~circle! to 1 ~square! for convex contours of
C(r ).

We first consider off-critical quenches with a global con-
servation law to prevent the magnetization from saturating.
We couple the system to a Creutz spin reservoir of size 2
@18#: each randomly chosen spin is updated by a Metropolis
algorithm, subject to an additional microcanonical constraint
that any spin change (62) fits in the spin reservoir. We
study size 10242 systems witĥ f&50.4. A snapshot from a
quench toT50.2Tc in Fig. 1 illustrates the strong anisotropy
even above the roughening transition@19#. We show some
contour plots of the scaled correlations in Fig. 2. It is clear
that the anisotropies are not limited to the smallr regime.
The anisotropy is increasing at late times~see inset of Fig.
3!. In the same regime, the spherically averaged correlations
scale well. The latest anisotropies, att52049 Monte Carlo
steps ~MCS’s!, before finite-size effects entered were
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x50.45 (T50), 0.38 (T50.2Tc), and 0.12 (T50.4Tc).
~Statistical error bars, with at least 30 samples in each case,
are less than60.001.!

We also studied nonconserved critical quenches. With
heat-bath dynamics and a sublattice update, late times in
large lattices could be reached. Even so, the asymmetry re-
mained small. For lattices of size 20482, and a quench to
T50, we showdC/dx vs x (x5r /L), along the diagonal
and lattice directions, in Fig. 3. We findx50.03 at the latest
time (t54097 MCS’s, 74 samples, statistical error
60.0003). The constant but orientation dependent domain
wall width, j(n), evident in the sharp downturn ofdC/dx
near x50 in the diagonal correlations, increasesx by
O(1/L). This is significant for small anisotropies and early
times @20#. Directly subtracting thisO(1/L) contribution

leads tox slowly increasing with time~inset of Fig. 3!, with
a corrected latest valuex50.02.

We have also simulated conserved 2D Ising systems with
nearest-neighbor Kawasaki exchange dynamics and a Me-
tropolis update. At low enough temperatures for the anisot-
ropy of s(n) to be visible, the activated dynamics slows the
simulations considerably. We explored size 2562 systems,
with ^f&50.4 andT50.4Tc , up to timest5106 MCS’s
(10 samples!. The length scales achieved (L&12) are so
small thatx'0 within numerical accuracy, so in Fig. 4 we
plot C(r ) against the energy-energy correlation function
CE(r )[^E(r )E(0)&/^E&221, whereE(r ) is the number of
broken bonds at siter minus the equilibrium bulk average.
This shows a significant and increasing difference between
correlations in the lattice and diagonal directions.

In summary of our numerical results, we find anisotropic
correlations in various quenched 2D Ising models. Anisot-
ropy increases with decreasing temperature and for increas-
ing net magnetization. Anisotropy effects are always slowly

FIG. 1. A 5122 region of a globally conservedT/Tc50.2
quench witĥ f&50.4 (t5513 MCS’s!. Lattice directions, here and
in the next figure, are vertical and horizontal.

FIG. 2. Anisotropic contours of scaled correlations
C(r /L)50.9, 0.8, 0.7, 0.6, and 0.5~from the center! for an off-
critical quench toT50 with ^f&50.4 and globally conserved
Creutz dynamics. The times aret5513 MCS’s ~dotted!, 1025
~dashed!, and 2049~solid!. Also shown, scaled by 1.4 for clarity,
are theC50.5 contours of quenches toT/Tc50, 0.2, 0.4, and 0.9
~solid, dashed, dot-dashed, and dotted lines, respectively! at
t51025 MCS’s. The length scaleL is such that, along the diagonal
direction, C(L)50.5. Circular ~square! contours correspond to
x50 (1).

FIG. 3. dC/dx vs scaled distances,x, for a nonconserved criti-
cal quench toT50. The plusses indicate correlations in the lattice
axis direction, while the triangles indicate correlations along lattice
diagonals~at t54097 MCS’s!. Solid and dashed lines indicate cor-
responding correlations att52049 and 1025 MCS’s, respectively.
In the inset is the anisotropy measurex vs t for T/Tc50, 0.2, and
0.4 globally conserved quenches from Fig. 2~crosses, dotted lines,
and diamonds, respectively!. At the bottom of the inset are the bare
and correctedx ~solid and dot-dashed lines, respectively! for the
nonconserved quench of the main figure.

FIG. 4. Two-point correlations vs energy-density correlations
for a conserved quench toT/Tc50.4 with ^f&50.4 ~size 2562).
The correlations are spherically averaged~stars and circles!, along
the axis~plusses and squares!, and along the diagonal~crosses and
triangles!. For clarity, solid lines have been used after the first zero
of C. Times are 2.63105 and 1.03106 MCS’s, respectively. Dotted
lines show data from size 1282 systems (36 samples! at the earlier
time.
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increasingat the latest times of our simulations. In all of our
simulations, the spherically averaged correlations scale rea-
sonably well while the anisotropy is still evolving. To study
the nonzero asymptotic anisotropy in these systems, some
sort of acceleration method is needed~see, e.g.,@6#! —
though with nonconserved dynamics the anisotropy will de-
pend on the numerical algorithm used.

In disordered@1,21# and frustrated@4,8# models, it has
been argued that scaling functions will be ‘‘universal’’ —
identical to simple Ising models. While logarithmic growth is
seen, it is thought to come from effectiveL dependence in
the kinetic prefactorG — so that scaled correlations are un-
affected. If this picture is correct, and scaling function uni-
versality holds in these systems~in the broad sense described
in the introduction!, then the results of this paper directly
apply and anisotropy will be present in disordered or frus-
trated lattice systems@22#. Indeed, in frustrated Ising models,
fairly large anisotropy is seen numerically@4,8#. Hopefully,
in experimental random-field systems~e.g.,@23#!, anisotropy
can be tested directly.

We can generalize our argument around Eqs.~1!–~3! to
systems with other types of singular defects. Using vector
O(n) order parameters, and a generalized Porod’s law
S(k)5D(k/k)L2nk2(d1n) @1#, we find that the anisotropic
contribution to the energy density is asymptotically negli-
gible for systems without domain walls@24#. However, other
systems with dissipative dynamics in which domain walls
dominate the asymptotic energetics will be anisotropic if the
surface tension is anisotropic, e.g., Potts models~see@7#!.

The growth laws of the characteristic length scaleL(t)
will remain independent of any anisotropies present, as long
as dynamical scaling is maintained. This follows from the
energy-scaling approach@15# since anisotropy does not
change the scaling properties of the energy or the rate of
energy dissipation. We would be surprised if the anisotropy
affected the dynamical scaling of the correlations~see, how-
ever,@6#!, though the scaling regime seems to be pushed to
much later times as the anisotropy slowly develops.~In ad-
dition, scaling functions will in general be functions of ori-
entation as well as scaled distance, as is discernible in Figs. 3
and 4.! It remains an open question whether nonzero
anisotropies have implications beyond the scaled correla-
tions, such as in autocorrelation exponents.

In practice, isotropic theories have worked fairly well for
spherically averaged correlations. Certainly, lattices, interac-
tions, and dynamics can be chosen to minimize anisotropies.
This would be desirable, for instance, in lattice simulations
of isotropic fluid or polymer systems. However, the language
of an isotropic zero-temperature phase-ordering fixed point
is inappropriate for a scalar system with an anisotropic sur-
face tension.

In summary, we expect anisotropy for any scalar lattice
system quenched to belowTc , including disordered and-or
frustrated systems. The anisotropy will depend on the details
of the system.
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