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Stress-free spatial anisotropy in phase ordering
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We predict late-time spatial anisotropy for scalar systems with anisotropic surface tension undergoing
dissipative quenches below their critical temperature. Spatial anisotropy is confirmed numerically for two-
dimensional Ising models with critical and off-critical quenches and with both conserved and nonconserved
dynamics. Due to the nonzero anisotropy, expected in all lattice systems, correlation functions in the scaling
limit depend on temperature, microscopic interactions, dynamics, disorder, and frustration.
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Most theoretical, numerical, and experimental treatmentshe functional angle dependence of the effective surface ten-
of nonequilibrium phase-ordering kinetics assume that assion as well as, for nonconserved dynamics, by details of the
ymptotic correlations are spatially isotropic in stress-freedynamics.
systems quenched from disordered initial conditions into the For definiteness, we consider a coarse-grained scalar or-
ordered phasd1,2]. Numerical measurements in simple der parameterg, in the continuum limit, and define an ef-
Ising models have supported this assumpfi8], despite ~ fective ~ free  energy ~ in ~ momentum  space
several qualitative reports to the contrd®;6]. It has not  F[{#}]=[dk[(k’+ D) drp_+Vi], where Vi[{a}] is
been clear whether Potts moddlg] and frustrated Ising the Fourier transform of local potential terms abg in-
models[4], where anisotropy effects have been measuredcludes anisotropic higher-order gradients. We define an
are typical or are special cases. Indeed, without a demonstrangle dependent free-energy densify) by restricting the
tion that anisotropy iexpectedasymptotically it has been integral inF to momenta in a given directiom and averag-
possible to discount measured anisotropy as being a transieifig (denoted by angle bracketsver the random initial con-
effect (see, e.g.[8]). ditions. To do the restricted momentum integral{F), at

It is reasonable but not obvious to expect anisotrapic  late enough times for domain walls to be well defined, we
relationsin phase ordering. The two-dimensioraD) Ising ~ use the anisotropic Porod law for the structure factor
model belowT, for example, is spatially anisotropic at ar- S(K)={#x# ) in general dimensiod (generalizing 12]):
bitrarily large scales in equilibrium correlatiofi§], in the
resulting surface tensidri0], and hence in the interface dy- —od+2_d—1p | —(d+1)
namics[11]. In fact, we demonstrate below that spatial an- S(l) =27 Ak P(k/k), @
isotropy isgenericin scalar systems for quenches into an
ordered phase with an anisotropic surface tension. which holds forL ~1<|k|<¢&(n) 1, whereL(t) is the char-

This asymptotic anisotropy leads to many universalityacteristic growing length scale of the system &i(d) is the
classes of phase-ordering correlations, each parametrized lbpmain wall width for domain walls with normal orientation

n=k/k. A(t)~L ! is the average area density of domain
wall and P(n) is the angle distribution function of domain
*Electronic address: a.rutenbergl@physics.oxford.ac.uk wall orientation. We find
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e(n)=Ac(n)P(n), 2) What about the dynamics? The RG approft| shows
thatI" (k) will only be renormalized analytically, i.e., anisot-

. 4 .
where the leading? and potential terms make isotropic con- "OPY Will only enter at(z)(k ) and higher. For conserved
tributions toor(n), while D, makes anisotropic contributions dynamics, wherd’(k) =k* to leading ordef14], anisotropic

both directly and througl§(n) ~*. From Eq.(2) we identify ~ contributions are subdominant in E) since the integral
o(n) as the effective angle dependent surface tension fogonverges in the UV15]. Thus neither the anisotropy of
domain walls with normal direction [13]. I'(k) nor the anisotropy of the core scaf¢n) will affect
Now consider a dissipative quenchTe-=0, with no ther-  €(n) through Eq.(3). For conserved dynamics then, the an-
mal noise. The dynamics will be given by isotropy of the surface tension alof@n equilibrium prop-
= —T(k)SF/8¢_,, where the dot indicates a time de- erty) determines the anisotropy of the correlations.
rivative. We assume leading behavior Bf= const, which With nonconserved dynamics, where= const to leading
corresponds to nonconserved dynamicsl'erI’,k?, which ~ order, the UV regime dominates the energy-dissipation inte-
corresponds to conserved dynamjdgl]. The time rate of gral (3) [15] and bothl'(k) and£(n) make anisotropic con-
change of the energy density is then simplp] tributions to e(n). As a result, anisotropy will in general
depend on the details of the microscopic dynamics, even
) ) including global conservation laws that are “irrelevaritg]
6(n)=f dk KX SF/ Sepebie) in terms of growth laws. In principle the anisotropy of
I'(k) could then be renormalized to compensat@); in
practice we numerically find anisotropy in all cases.
For the remainder of this paper, we explore 2D Ising
models with nearest-neighbor interactions on a periodic

wherek=kn. We have used the dynamics ¢fto replace Square lattice under quenches from random initial conditions.
the functional derivative of the free energy so that the resultFor a system defined on a lattice, anisotropies will be present
ing expression fore(n) has no explicit dependence on in the surface tension beloW,, because lattice interactions
F[{¢}] or, hence, orw(n). are not rotationally invariant. Our argument then implies an-
Imposing isotropic correlations generally leads to a con4isotropic correlations in the scaling limit. Indeed, we find
tradiction if the surface tension is anisotropie- different  anisotropic correlations quite generally — for a variety of
anisotropies in Eq92) and(3). This implies thathe corre-  temperatures below,., of initial magnetizations, and for all
lations are anisotropic at arbitrarily late times of globally conserved, nonconserved, and locally conserved
Itis easy to see that anisotropic correlations are needed @ynamics. These anisotropies do not decrease at late times,
have consistency between the two expressions for the energi would be expected for transient effects introduced by the
density. Apart from anisotropic correlations, the anisotropydynamics at earlier times.
of €(n) in Eq. (2) is determined by the statics, through ~\ve measure the normalized correlation€(r,t)
a(n). Qn the other hand, the amsotropye((h) in Eq..(3) IS —[((r)(0))—(d)2/[(H(07) $(0))— ()2, which
determined by the dynamics, througt(k), in addmon_lto ranges from 1 at short distances to 0 at infirfity3]. The
p933|ble contrlbutl_ons by the effectlvg uv c.utog(n) © anisotropic length scale(n,t) of a system is defined by the
Sincea andl“ are independent, the amsotroples Of.E(®' scale in directiom at which C=0.5 for nonconserved dy-
and (3) will not generally be equal unless anisotropic corre- : ! .
lations make up the difference. For more general forms melcs, and by the f|r§t zero.df fgr conserved dynamics. .

P ; 9 I rrelations in all directions by the length scale in
the free energy[{¢}] and dynamicd'(k) the same argu- € scale correlatio y 9 ;
ment appliesas long as the energy density is represented b§}1e diagonal direction. A natural measure of anlsgtropy is
Egs.(2) and (3). X=(Lmax/me—1)_/(\/§f 1), Wherngax |s_ti_1e maximum

The renormalization-grou(RG) approach to phase order- 1ength scale at a given time aigi, is the minimum, and so
ing [16] is easily generalized to include anisotropy. The onlyx runs from 0O(circle) to 1 (square for convex contours of
change is to note that any anisotropy of eittdf{¢}] or  C(r).

I’ (k) will be renormalized by microscopic detail#n illus- We first consider off-critical quenches with a global con-
tration of this renormalization is the temperature dependencgervation law to prevent the magnetization from saturating.
of the effective surface tensigf0].) The demonstration that We couple the system to a Creutz spin reservoir of size 2
thermal noise will be asymptotically irrelevant for quenches[18]: each randomly chosen spin is updated by a Metropolis
below T, will still apply, with the caveat that the effective algorithm, subject to an additional microcanonical constraint
T=0 dynamics will include the effective surface tension atthat any spin change®(2) fits in the spin reservoir. We
the quench temperature. We then apply our above argumestudy size 1024 systems with( ¢)=0.4. A snapshot from a
that predicts anisotropy with noise free dynamics. As a requench toT =0.2T .. in Fig. 1 illustrates the strong anisotropy
sult, we expect anisotropy for all scalar quenches belgw even above the roughening transitipt8]. We show some
[17]. contour plots of the scaled correlations in Fig. 2. It is clear

The surface tension will depend on temperature, disordethat the anisotropies are not limited to the snrallegime.
and the details of the local interactions in the system, but willThe anisotropy is increasing at late tim@e inset of Fig.
be independent of the dynamics at late times. Since the suB). In the same regime, the spherically averaged correlations
face tension always enters into H@®), it will affect aniso-  scale well. The latest anisotropies,tat2049 Monte Carlo
tropic correlations in the scaling limit. steps (MCS'’s), before finite-size effects entered were
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. ... . a - FIG. 3. dC/dx vs scaled distancesg, for a nonconserved criti-
P - - cal quench tor'=0. The plusses indicate correlations in the lattice

axis direction, while the triangles indicate correlations along lattice
FIG. 1. A 512 region of a globally conserved/T.=0.2 diagonalsatt=4097 MCS'S. Solid and dashed lines indicate cor-

quench with{ ¢)=0.4 (t=513 MCS'9. Lattice directions, here and responding correlations &t=2049 and 1025 MCS's, respectively.
in the next figure, are vertical and horizontal. In the inset is the anisotropy measyrerst for T/T.=0, 0.2, and

0.4 globally conserved quenches from FigicPosses, dotted lines,
and diamonds, respectivehyAt the bottom of the inset are the bare

X:0;45 (T=0), 0.38 GZO-ZTC)' and 0.12 U—Z.O-‘ﬂ—c)- and correctedy (solid and dot-dashed lines, respectiyelgr the
(Statistical error bars, with at least 30 samples in each cas@enconserved quench of the main figure.

are less than-0.001)
We also studlgd nonconserved. critical quencheg. W'tneads toy slowly increasing with timdinset of Fig. 3, with

heat-bath dynamics and a sublattice update, late times I corrected latest valug=0.02.

large lattices could be reached. Even so, the asymmetry re-

mained small. For lattices of size 248&nd a quench to

T=0, we showdC/dx vs x (x=r/L), along the diagonal

We have also simulated conserved 2D Ising systems with
nearest-neighbor Kawasaki exchange dynamics and a Me-
X e S 4 tropolis update. At low enough temperatures for the anisot-
and lattice directions, in Fig. 3. We find=0.03 at the latest 4 of 5(n) to be visible, the activated dynamics slows the
time (t=4097 MCS's, 74 samples, statistical error gy jations considerably. We explored size 25§stems,
*0.0003). The constant but orientation dependent domaifs, (¢)=0.4 andT=0.4T,, up to timest=10° MCS’s
wall width, _g(n), evigjent in the sharp downturn afC/dx (10 samples The length scales achieved £12) are so
near x=0 in the diagonal correlations, increasgs by  gmga)l thaty~0 within numerical accuracy, so in Fig. 4 we
O(1L). This is significant for small anisotropies and early plot C(r) against the energy-energy correlation function
times [20]. Directly subtracting thisO(1/L) contribution Ce(r)=(E(r)E(0))/(E)2—1, whereE(r) is the number of
broken bonds at site minus the equilibrium bulk average.
This shows a significant and increasing difference between
correlations in the lattice and diagonal directions.

In summary of our numerical results, we find anisotropic
correlations in various quenched 2D Ising models. Anisot-
ropy increases with decreasing temperature and for increas-
ing net magnetization. Anisotropy effects are always slowly

1/CE(rY)

FIG. 2. Anisotropic contours of scaled correlations
C(r/L)=0.9, 0.8, 0.7, 0.6, and 0.6rom the center for an off-
critical quench toT=0 with {¢)=0.4 and globally conserved FIG. 4. Two-point correlations vs energy-density correlations
Creutz dynamics. The times ate=513 MCS'’s (dotted, 1025  for a conserved quench 6/ T,=0.4 with ($)=0.4 (size 256).
(dashed, and 2049(solid). Also shown, scaled by 1.4 for clarity, The correlations are spherically averagsthrs and circlgs along
are theC=0.5 contours of quenches WT.=0, 0.2, 0.4, and 0.9 the axis(plusses and squanesnd along the diagonétrosses and
(solid, dashed, dot-dashed, and dotted lines, respectivaly triangles. For clarity, solid lines have been used after the first zero
t=1025 MCS’s. The length scaleis such that, along the diagonal of C. Times are 2.8 10° and 1.0 10° MCS's, respectively. Dotted
direction, C(L)=0.5. Circular (squaré contours correspond to lines show data from size 128ystems (36 sampleat the earlier
x=0 (1). time.
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increasingat the latest times of our simulations. In all of our ~ The growth laws of the characteristic length schig)
simulations, the spherically averaged correlations scale reayill remain independent of any anisotropies present, as long
sonably well while the anisotropy is still evolving. To study as dynamical scaling is maintained. This follows from the
the nonzero asymptotic anisotropy in these systems, somghergy-scaling approachl5] since anisotropy does not

sort of acceleration method is needésee, e.9.[6]) —  change the scaling properties of the energy or the rate of
though with nonconserved dynamics the anisotropy will deenergy dissipation. We would be surprised if the anisotropy
pend on the numerical algorithm used. . affected the dynamical scaling of the correlatigsse, how-

In disordered[1,21] and frustrated4,8] models, it has  gyer [6]), though the scaling regime seems to be pushed to
been argued that scaling functions will be “universal” — . \-h |ater times as the anisotropy slowly develdjis.ad-

identical to simple Ising models. While logarithmic growth is yjtio “scaling functions will in general be functions of ori-
seen, it is thought to come from effectitedependence in  gniation as well as scaled distance, as is discernible in Figs. 3
the kinetic prefactol” — so that scaled correlations are un- 5 4) It remains an open question whether nonzero

affecte_d. If this_ picture is correct, and scaling function_ uni'anisotropies have implications beyond the scaled correla-
versality holds in these systertia the broad sense described tions, such as in autocorrelation exponents.
in the introduction, then the results of this paper directly |, hractice, isotropic theories have worked fairly well for
apply and anisotropy will be present in disordered or fruspnerically averaged correlations. Certainly, lattices, interac-
trated lattice systenf22]. Indeed, in frustrated Ising models, (iong, and dynamics can be chosen to minimize anisotropies.
fairly large anisotropy is seen numericall,8]. Hopefully,  This would be desirable, for instance, in lattice simulations
in experimental random-field systertesg.,[23]), anisotropy ot jsotropic fluid or polymer systems. However, the language
can be tested directly. of an isotropic zero-temperature phase-ordering fixed point
We can generalize our argument around H3$—(3) 0 s inappropriate for a scalar system with an anisotropic sur-
systems with other types of singular defects. Using vectof,ce tension.
O(n) order p‘irr?’ﬁ?dtfg! and a generalized Porod's 1aw |n symmary, we expect anisotropy for any scalar lattice
S(k)=D(k/k)L™"k [1], we find that the anisotropic ~system quenched to beloW, including disordered and-or

contribution to the energy density is asymptotically negli-fsirated systems. The anisotropy will depend on the details
gible for systems without domain wallg4]. However, other ¢ the system.

systems with dissipative dynamics in which domain walls
dominate the asymptotic energetics will be anisotropic if the | thank J. Cardy for discussions. This work was supported

surface tension is anisotropic, e.g., Potts modete[7]). by EPSRC Grant No. GR/J78044.
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