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ouble-twist model for the radial
structure of collagen fibrils†

Aidan I. Brown, Laurent Kreplak* and Andrew D. Rutenberg*

Mammalian tissues contain networks and ordered arrays of collagen fibrils originating from the periodic

self-assembly of helical 300 nm long tropocollagen complexes. The fibril radius is typically between 25

to 250 nm, and tropocollagen at the surface appears to exhibit a characteristic twist-angle with respect

to the fibril axis. Similar fibril radii and twist-angles at the surface are observed in vitro, suggesting that

these features are controlled by a similar self-assembly process. In this work, we propose a physical

mechanism of equilibrium radius control for collagen fibrils based on a radially varying double-twist

alignment of tropocollagen within a collagen fibril. The free-energy of alignment is similar to that of

liquid crystalline blue phases, and we employ an analytic Euler–Lagrange and numerical free energy

minimization to determine the twist-angle between the molecular axis and the fibril axis along the radial

direction. Competition between the different elastic energy components, together with a surface energy,

determines the equilibrium radius and twist-angle at the fibril surface. A simplified model with a twist-

angle that is linear with radius is a reasonable approximation in some parameter regimes, and explains a

power-law dependence of radius and twist-angle at the surface as parameters are varied. Fibril radius

and twist-angle at the surface corresponding to an equilibrium free-energy minimum are consistent with

existing experimental measurements of collagen fibrils. Remarkably, in the experimental regime, all of

our model parameters are important for controlling equilibrium structural parameters of collagen fibrils.
1 Introduction

Collagen is the most abundant protein in mammalian tissues,
providing mechanical strength to tissues such as bone, tendon,
ligament, and skin. Seven (I, II, III, V, XI, XXIV, and XXVII) of the
28 reported varieties of collagen form brils.1 The spatial orga-
nization of brils and their radii are characteristic of each tissue
type,2 and in vivo the bril radius changes with both age and
loading history.3,4 In vitro, the bril radius depends on assembly
conditions5,6 such as collagen concentration, pH, and ionic
strength, as well as on the type of collagen(s) present in the bril.7

At the molecular level collagen brils are linear aggregates of
�300 nm long, �1 nm wide tropocollagen complexes with a
distinctive triple-helical structure.8,9 Both full-length tropocollagen
and sonicated fragments form cholesteric phases in vitro at high
protein concentrations, above 800 mg ml�1 (ref. 6, 10 and 11)
Cholesteric pitch and other aspects of collagen liquid crystallinity
have been reviewed in detail.12 The measured cholesteric pitch
varies between 0.5 and 2 mm depending on experimental condi-
tions.6 At lower concentration and in vivo, tropocollagen complexes
pack laterally in a semi-crystalline fashion to form 20 to 500 nm
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diameter brils.6,8 The details of the lateral packing of tropocol-
lagen complexes within a bril remain unclear, but accepted
packing models have approximately a local hexagonal structure
with a concentric superstructure8,13 and roughly 4000 tropocol-
lagen complexes are needed per 100 nm of bril diameter.13

The axis of the tropocollagen complexes does not lay perfectly
parallel to the bril axis: X-ray scattering images of tendons
displays arcs along the axis of brils with an opening angle of
roughly 15�,14 and brils imaged by electron microscopy (EM)
show twisted morphologies with angular mismatch between the
molecular and brillar axes of up to 20� at their surface.15–17

Consistent with these measurements, Bouligand et al.18

described a double twist conguration in EM of reconstituted
collagen brils. The same double twist conguration was also
proposed by Hukins et al. to explain changes in the X-ray scat-
tering of drying elastoidin spicules.19 Double twist congurations
are used to explain liquid crystal blue phases that occur near the
isotropic to cholesteric transition for small chiral molecules with
a small cholesteric pitch.20,21 In a cholesteric phase the director
eld rotates along one preferential direction, whereas in a double
twist conguration themolecular orientation depends on a radial
coordinate in a cylindrical domain22,23 (see Fig. 1). In most
models of blue phases these cylinders then form lattices, with
isotropic phase in the gaps between tubes.22

Several models of collagen brils incorporate tilted tropo-
collagen molecules in a cylindrical geometry. The simplest is a
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 (a) A double-twist configuration of tropocollagen molecules is schematically illustrated by tilted molecules within a fibril of radius R. The
fibril axis is along the z direction, as indicated. The tropocollagen director is axial at the centre of the fibril, but tilts away from the axis more as the
radial distance increases. The thicker red outline indicates a radius r < Rwithin the fibril. (b) We use cylindrical coordinates to describe the double-
twist configuration inside a fibril. For r < R, the twist-angle j(r) only depends on the radius r. The local director~n, tangent~f, and axis~z directions
then are as illustrated. The director has no radial component, so that nf ¼ �sin j(r) and nz ¼ cos j(r).
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constant twist-angle bril model,15 where all molecules have the
same twist-angle (orientation) with respect to the cylindrical
axis. Recently, a two-phase model has been proposed24 with an
axial core and a constant twist-angle sheath outside of the core.
Closer to the blue phase models, a constant gradient of the
twist-angle bril model16 has molecules parallel to the axis at
the bril centre, with the twist-angle increasing linearly until
the bril surface is reached. All of these models have been
proposed to qualitatively reconcile EM images of intact and
sectioned collagen brils. However, they do not consider the
energetics of the proposed congurations and so cannot
address whether they reect possible equilibrium states.

We model the collagen bril as a cylindrical double twist
conguration. A Frank free energy22 is used to describe the free
energy per bril volume, in conjunction with surface energy.
Euler–Lagrange equations are developed to minimize “bulk”
energetics and then surface terms are added before numerically
identifying global free-energy minima. We explore the effects of
elastic constants associated with splay (K1), twist (K2), bend (K3),
and saddle-splay (K24) deformations of the director eld, as well
as inverse cholesteric pitch (q0) and surface tension (g). Notably,
equal moduli (K1 ¼ K2 ¼ K3 (ref. 22 and 25)) are not assumed.
Rather, consistent with the large aspect ratio of tropocollagen,
we allow K3/K2 to be as large as 30.26,27 We also investigate the
specic roles of the inverse cholesteric pitch q0, the surface
tension g, and the saddle-splay modulus K24. The model leads
to collagen bril surface twist-angle vs. radius relationships that
are consistent with available experimental data. Accordingly, we
propose that equilibrium free-energy minimization controls the
radius and twist-angles of many collagen brils.
2 Model
2.1 Frank free energy

The Frank free energy density for a defect-free region of chole-
steric-like liquid crystal with a spatially varying orientation
vector ~n is22
This journal is © The Royal Society of Chemistry 2014
f ¼ K1

2

�
V$~n

�2þ K2

2

�
~n$V�~nþ q0

�2
þ K3

2

�
~n� V�~n

�2�K24V$
�
~n$V$~nþ~n� V�~n

�
; (1)

where K1, K2, K3, and K24 terms correspond to the splay, twist,
bend, and saddle-splay elastic energies, respectively. In a
cholesteric phase,22 if the z direction is chosen perpendicular to
the plane of the liquid crystal layers, the director~n in each layer
will rotate along z: nx ¼ cos(q0z), ny ¼ sin(q0z), and nz ¼ 0. Here
q0 is the inverse cholesteric pitch and quanties the pitch of the
helix, P ¼ 2p/q0. It is straightforward to show that fcholesteric ¼ 0,
so that thermodynamically stable phases other than the chole-
steric must have the spatially-averaged hfi < 0. The saddle-splay
term (K24) can be negative and so is necessary to achieve a stable
blue phase.20
2.2 Fibril energy

Our starting point is the common assumption for both blue
phases22,28,29 and collagen brils15,18,24 that there is no radial
component to the orientation vector. This is only strictly
necessary at r ¼ 0 to avoid singularities in f, but it is assumed
throughout the bril. Assuming approximate homogeneity of
the orientation eld along the axial direction of a cylindrical
bril, the director may then be parameterized by a single
twist-angle as shown in Fig. 1: nr ¼ 0, nf ¼�sin j(r), and nz ¼
cos j(r). The resulting free energy density for a bril is then29

ffibril ¼ 1

2
K2

�
q0 � j 0�1

r
sinj cosj

�2

þ 1

2
K3

sin4
j

r2

� K24

r

d sin2
j

dr
; (2)

where the j0 h dj/dr. We identify the contributions due to K2,
K3, and K24, with f2, f3, and f24, respectively. With a given bril
radius R, we can integrate fbril to obtain the free energy per unit
length due to the double-twist conguration:
Soft Matter, 2014, 10, 8500–8511 | 8501
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~Ebulkh

ðR
0

2prf drh ~E2 þ ~E3 þ ~E24; (3)

where each ~Ei is the contribution from the respective fi. For the
saddle-splay term we have exactly ~E24 ¼ �2pK24 sin

2 j(R).

A given cross-section A of collagen bre may be distributed
between N ¼ A/(pR2) individual brils which will each have a
surface area per unit length of 2pR. For a surface tension g this
leads to an additional surface energy Esurf¼ 2pgR. For a given A,
the total free energy per unit length is then
~E ¼ N( ~Ebulk + ~Esurf) (4)

¼ A

pR2

h
~E2 þ ~E3 � 2pK24 sin

2
jðRÞ þ 2pgR

i
: (5)

This then directly gives us the congurational free-energy
per unit volume of bril

Eh
~E

A
¼

~E2

pR2
þ

~E3

pR2
� 2K24 sin

2
jðRÞ

R2
þ 2g

R
: (6)

We will call E the “energy” throughout the paper, and this
quantity will be minimized to determine the equilibrium
(minimal free-energy per unit volume) conguration for a
collection of collagen brils. We note that Echolesteric ¼ 0.
2.3 Determining the director

While the twist-angle j(r) is oen approximated as having a
constant gradient,20–22,28 we may determine it numerically
without this approximation using a standard variational
approach to extremize the bulk energy E2 + E3. Assuming that
arbitrary but small variations h(r) in the twist-angle j(r) do not
change the bulk energy we obtain

ðR
0

"
r
vf

vj
� d

dr

�
r
vf

vj 0

�#
hðrÞdrþ

"
hðrÞr vf

vj 0

#R
0

¼ 0: (7)

With no radial component to the director, where j(0)¼ 0, we
must have h(0) ¼ 0. However we cannot constrain h(R), and
requiring the second term of eqn (7) to independently vanish
gives us

K2

�
q0 � j0ðRÞ�sinð2jðRÞÞ

2R

�
þ K24

R
sinð2jðRÞÞ¼ 0: (8)

Similarly, arbitrary values of h(r) force the integral in the rst
term in eqn (7) to vanish which gives us the Euler–Lagrange
(E–L) equation

r
vð f2 þ f3Þ

vj
¼ d

dr

�
r
vf2

vj 0

�
: (9)
8502 | Soft Matter, 2014, 10, 8500–8511
Applying our previous expressions for f2 and f3 then gives us

j 0 þ rj 00 ¼ q0 þ K̂
�1

r
sin2

j sinð2jÞ � cosð2jÞ
�
q0 � sinð2jÞ

2r

�
;

(10)

where K̂�1 ¼ K3/K2.
2.4 Numerical method

Twist-angles j(r) that satisfy eqn (8) and (10) minimize the free-
energy for a given bril radius R. We determine j(r) numeri-
cally, using a modied midpoint method to solve eqn (10) for a
given j0(0). The initial twist-angle gradient j0(0) is then varied
until the E–L solution also satises eqn (8). We check that the
E–L solutions represent local minima of the free-energy with
respect to j0(0). These solutions determine the optimal twist-
angle conguration for a given R. We then calculate the elastic
and surface energies, and use eqn (6) to nd E(R). As illustrated
in Fig. S1,† we check that the total energy represents a local
minimum with respect to radius with d2E/dr2 > 0.

Since we have a largely numerical approach, we cannot
denitively say that our solutions represent the global (as
opposed to local) minimization of the free-energy. However, as
illustrated in Fig. S2,† we have considered E(R) for various
parameterizations and we only ever nd one minimum appro-
priate for collagen brils with radius R < 1 mm that is stable with
respect to the cholesteric with E < 0.
2.5 Parameter values

Unless otherwise stated, we will explore our model around
default parameter values K2¼ 10 pN, K3¼ 300 pN, K24 ¼ K2¼ 10
pN, g¼ 3 pN mm�1, and q0¼ p mm�1. Many of these parameters
have not yet been directly measured for collagen, so, as
described here, we rely on the liquid crystal literature for
approximate elastic constants of solutions of long and/or chiral
molecules.

The twist modulus, K2, has been estimated to bex10�6 dyne
¼ 10 pN for a dilute solution of chiral molecules in a conven-
tional nematic,22 a comparable value of 3 � 10�12N ¼ 3 pN20,22,25

has been used for blue phases. We do not expect K2 to be
signicantly affected by the large aspect ratio of tropocollagen
because it is approximately unchanged as molecular weight is
varied.30,31 Accordingly, we use K2 ¼ 10 pN as our default value.

While the three moduli of the Frank free energy, eqn (1), are
commonly taken to be equal, the bend modulus, K3, is affected
by the length of the liquid crystalline molecule. For liquid
crystals composed of semi-exible polymers the K3/K2 ratio
saturates to a constant value for polymers much longer than
their persistence length, with the ratio controlled by the
persistence length.26,27 For example, for the semi-rigid macro-
molecule poly-g-benzyl glutamate, the saturation ratio of K3/K2

¼ 30 is reached for aspect ratios between 50 and 100.26 As
tropocollagen complexes are greater than 100� longer than
their width,9 we take the ratio K3 ¼ 30K2 as our default ratio.
However, the persistence length of collagen, and thus K3, is not
independent of environment — in particular choice of solvent
This journal is © The Royal Society of Chemistry 2014
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can affect collagen persistence length.32 We investigate smaller
values of K3 below.

While the saddle-splay modulus is typically neglected in a
bulk cholesteric phase because it is equivalent to a surface
term,20,22 surface terms cannot be neglected for double-twist
cylinders. The saddle-splay modulus has been estimated22 to
satisfy K24 x K2, and we use this to determine our default value
of K24 ¼ K2 ¼ 10 pN. We vary K24 below.

The surface tension of blue phases has been estimated to
range from 5 � 10�4 erg cm�2 ¼ 0.5 pN mm�1 for azoxy-
phenetole to 2.3 � 10�2 erg cm�2 ¼ 23 pN mm�1 for methoxy-
benzylidene-butylaniline.21 Prost and de Gennes22 use a value
10�2 erg cm�2 ¼ 10 pN mm�1, which is within this range. In our
case, we consider a concentrated solution of collagen in water.6

The surface tension for a bril immersed in a concentrated
aqueous collagen solution should be lower than the surface
tension of the same bril in pure water. The latter should be
similar to the surface tension of high molecular weight poly-
(ethylene Glycol) in potassium phosphate, which reaches as low
as 100 pN mm�1.33 As a starting point for this study we use a
default surface tension of g ¼ 3 pN mm�1 – this is within the
broad range used for blue phases. We explore the effects of
different surface tensions below. We expect surface tension to
depend upon local conditions, for example in different tissue
types or with different collagen concentrations.

The pitch, P h 2p/q0, of the cholesteric phase of a lyotropic
mesogen depends on both ionic strength and concentration.34

Cholesteric phases of DNA in vitro and in vivo exhibit pitches
ranging between 50 nanometers and 5 micrometers,35 with the
smallest pitches at the highest concentration. Measured
cholesteric pitches of collagen also decrease with concentration
and vary between 0.5 and 2 mm,6 so that q0 ˛ [p, 4p] mm�1. We
use q0 ¼ pmm�1 as our default value, corresponding to a high
concentration solution of collagen, but we also explore other
values below.
3 Results
3.1 Linear approximation

While we expect the gradient of the twist-angle at the centre of
the bril, j0(0), to be of the same order as q0,29 it is a common
approximation20–22,28 to additionally assume that the gradient of
the twist-angle is constant throughout the bril. We call this the
linear approximation, since then j(r) ¼ j0r. If we additionally
restrict our attention to regimes where the twist angle is small,
i.e. j(r) � 1, then the linear (small-angle) approximation is
straight-forward analytically. Using eqn (2) in (6), together with
the linear small-angle approximation, we obtain

Elinear ¼ N ~E

A
¼

~E

pR2

¼
�
K2

2
ðq0 � 2j0Þ2 � 2K24ðj0Þ2

�
þ K3

4
ðj 0Þ4R2 þ 2g

R
: (11)

Minimizing this energy per unit volume with respect to
radius R leads to
This journal is © The Royal Society of Chemistry 2014
Rlin ¼
�

4g

K3j 04

�1=3

: (12)

For convenience, we restrict our attention to K24 ¼ K2, which
leads to

j 0
lin ¼

K2
3q0

3

2K3g2
; (13)

Rlin ¼ 4K3g
3

q04K2
4
; (14)

jlinearðRÞ ¼ j0R ¼ 2g

q0K2

; (15)

Elin ¼ K2q0
2

2

 
1� K2

3q0
2

2g2K3

!
: (16)

With the linear and small j approximations, the bril phase
is stable with respect to the cholesteric (with Elin < 0) when
K2

3q0
2 > 2g2K3. Larger K3 and g values reduce the stability of the

bril phase, while larger K2 and q0 values increase the stability
of the bril phase.

Consider the self-consistency of the small angle and linear
approximations. From eqn (15), a small surface angle requires g
( q0K2/2, which together with the stability condition from eqn
(16) requires that K3 < 2K2. This condition is violated for our
collagen parameterization since K3/K2 z 30. This means that
the small-angle linear approximation gives an unstable bril
phase with respect to the cholesteric. Even if we ignore the
cholesteric phase, the linear approximation requires that the
term ignored in eqn (10) is small— i.e. that Rj0 0 � j0. Using our
linear solution, we obtain Rj0 0/j0 ¼ 2K3/K2j(R)

2. For our default
parameter values the right-side is z2 — i.e. not small. In
summary, the linear approximation is uncontrolled for larger
values of K3/K2.

In addition to the small-angle linear approximation, we also
consider the linear approximation alone – without any small
angle approximation. We do this numerically, by enforcing j0(r)
¼ j0r instead of eqn (8) and (10), and then minimizing E with
respect to j0 and R. As shown in our gures below, the linear
approximation results largely agree with the small-angle linear
approximation results— this indicates that disagreements with
the full numerical free-energy minimization arise largely from
the linear approximation alone rather than from the (analyti-
cally convenient) small-angle approximation. Nevertheless, we
will show below that eqn (14) and (15) still provide valuable
insight into the qualitative scaling behaviour of our results as
model parameters are varied.
3.2 Existence of a stable free-energy minimum vs. bril
radius R

We show in Fig. 2(a) the total energy per unit volume E, and in
Fig. 2(b) the twist-angle at the surface j(R), both as a function of
bril radius R, while K3 is varied as indicated in the legend (and
Soft Matter, 2014, 10, 8500–8511 | 8503
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Fig. 2 (a) Energy per unit volume E(R) vs. fibril radius R, for several K3/K2 ratios as indicated by the legend. E(R) is given by eqn (6), where the twist-
angle satisfies eqn (8) and (10) to result in theminimal bulk free-energy at a given R. Inset highlights the stable (E < 0) minima for K3¼ 30K2 and K3
¼ 10K2. (b) Corresponding twist-angle at the surface j(R) vs. R. (c) Positive energies for the same data as (a). Dotted black line is the surface
tension contribution. (d) Corresponding to the minima in (a), the twist-angle j(r) vs. radial coordinate r for r ˛ [0, R]. The dashed black lines
represent linear extrapolations using the twist-angle gradient at small r. The legend in (a) applies to the entire figure. We use our default values of
q0 ¼ p mm�1, K2 ¼ 10 pN, K24 ¼ 10 pN, and g ¼ 3 pN mm�1.
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K2 ¼ 10 pN). While the equal constant approximation22,25 typi-
cally assumes a bend modulus of K3 ¼ K2, the large length to
width ratio of tropocollagen makes values up to K3 ¼ 30K2

appropriate.26,27

Fig. 2(a) illustrates that there is a well-dened minimum in
the energy vs. R, indicating that the radius of a collagen bril
can be controlled by equilibrium free-energy minimization. See
also Fig. S1 and S2.† This minimum is deeper and occurs at
lower radii for smaller K3. The inset shows that the minimum
still has a negative free-energy at the largest K3 explored, indi-
cating thermodynamic stability vs. the cholesteric phase. We
also note that at a given R, E(R) monotonically increases with K3

— as expected since larger K3 have larger positive contributions
in eqn (1). Similarly, we see in Fig. 2(b) that j(R) is larger for
smaller K3 values — as expected due to the lower energetics of
bending. The positive region of the energies in Fig. 2(a) are
plotted in Fig. 2(c). At low radii, the energy is dominated by the
surface tension, which is shown in Fig. 2(c) as a dotted black
line. The bril energies trend towards the surface tension at low
radii, keeping E > 0 in this regime.
8504 | Soft Matter, 2014, 10, 8500–8511
The j(r) corresponding to the energy minima of Fig. 2(a) are
plotted in Fig. 2(d) for r# R. All the K3 values reach similar twist-
angle at the surface j(R), where r ¼ R, but for low K3 values they
do this at a much lower radius than higher K3 values. j(r) is
close to linear for all four K3 values shown in Fig. 2(d). The
dotted black lines in Fig. 2(d) are the linear extrapolations of the
initial slope of the numerical curves. For low K3 values the linear
and numerical curves are indistinguishable, but as K3 increases
the difference grows. The disagreement is despite the small
values of the twist-angle, which reinforces our observation that
the linear approximation is not self-consistent for larger values
of K3 — and indicates that this is independent of any small-
angle approximation.

Fig. 3 shows the different components contributing to the
total energy in Fig. 2(a), using the largest and smallest K3 values
in Fig. 3(a) and (b), respectively. The different energy compo-
nents plotted in Fig. 3 are the different terms on the right-hand-
side of eqn (6): twist E2, bend E3, saddle-splay E24, and the
surface tension are the rst, second, third, and fourth terms
respectively. The total energy E is their sum. We have plotted
This journal is © The Royal Society of Chemistry 2014
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negative E24 and negative E, as indicated, so that we can use a
log–log scale.

The plots for both K3 values are qualitatively similar. At low R
the component terms with the largest magnitudes are E2 and
E24 — these are nearly equal in magnitude but have opposite
sign. At low R, the next largest term is the surface tension, which
makes the total energy positive. As R increases the magnitude of
E2 drops more rapidly than E24, which allows the total energy to
become negative — corresponding to stable brils. At larger R,
E2 begins to increase, leading to a smaller magnitude of E — i.e.
an energy minimum. We note that as K3 is increased from K2 to
30K2, the range of R that corresponds to stable brils with
respect to the cholesteric phase (with E < 0) decreases
signicantly.
3.3 Parameter variation

For each parameter combination of inverse cholesteric pitch q0,
twist modulus K2, bend modulus K3, saddle-splay modulus K24,
and surface tension g, we identify the minimum of E(R) — as
illustrated in Fig. 2(a). This gives the equilibrium bril radius R,
twist-angle at the surface j(R), and total energy E. In this
section, we show how those equilibrium values depend upon
the model parameters. We note that bril radius R and twist-
angle at the surface j(R) are experimentally accessible, while E
must be negative to correspond to a stable phase with respect to
the bulk cholesteric.

3.3.1 Inverse cholesteric pitch q0 dependence. In Fig. 4 we
systematically explore the inverse cholesteric pitch q0, for
several values of the bend modulus K3 as indicated by the
legend in Fig. 4(c). We explore q0 in the range6 1–10 mm�1, with
K3/K2 ¼ 1 (ref. 22 and 25) to K3/K2 ¼ 30.26,27

Fig. 4(a) shows the equilibrium bril radius R vs. inverse
cholesteric pitch q0. R appears to follow a power law of q0 for all
K3/K2 ratios, with an apparent exponent of �4. With variation of
q0, the data for all K3 values crosses the shaded region showing
Fig. 3 Contributions of different elastic components to the total energy
(~E2/(pR

2), thin dashed-double-dotted black line) is E2, bend term (~E3/(pR
dotted green line) is E24, and the surface tension term (thin dash-dotted
(thicker solid red line). Note that negative E24 and negative total E are plo
default values of q0 ¼ p mm�1, K2 ¼ 10 pN, K24 ¼ 10 pN, and g ¼ 3 pN m

This journal is © The Royal Society of Chemistry 2014
the range of experimental measurements. The dashed black
lines are from the small-angle linear approximation in eqn (14),
and show remarkable agreement. In particular, the small-angle
linear approximation from eqn (14) recovers the observed R �
q0

�4 scaling. It also captures the approximately linear increase
of R as K3 is increased.

Fig. 4(b) shows the twist-angle at the surface j(R) as a
function of the inverse cholesteric pitch q0. The curves for
different K3 values are similar, and all cross the shaded region
showing the range of experimental measurements. An approx-
imate power law is seen, and reasonable agreement with the
dashed line given by the small-angle linear approximation from
eqn (15), with j � q0

�1, is seen. Nevertheless the small-angle
linear approximation has no K3 dependence, and signicant
deviations are seen at smaller q0 with larger K3 values. The best
agreement is for K3/K2 ¼ 1, where the self-consistent stability of
the linear approximation holds (with K3/K2 < 2, see Section 3.1).
For larger values of K3/K2 the small-angle linear approximation
is no longer self-consistent and we see the effects in the twist-
angle at the surface, j(R). The linear approximation alone
(black dotted curves in Fig. 4) are not signicantly different than
the small-angle linear approximation results.

Fig. 4(c) parametrically plots the twist-angle at the surface
j(R) against the radius R as q0 is varied. j(R) follows an
approximate power-law vs. R, with j� R1/4, as expected from the
q0 dependence of eqn (14) and (15). The deviations from the
small-angle linear approximation at larger R are due to the
deviation of j(R) from the linear approximation for small values
of the inverse cholesteric pitch q0, as we saw in Fig. 4(a) and (b).
The linear approximation (dotted black lines) does not signi-
cantly improve upon the small-angle linear approximation
results (dashed black lines) — as expected due to the small
surface twist-angles involved.

The black squares in Fig. 4(c) show experimental data, where
the inset provides a numerical key indicating the source for
E vs. R for (a) K3/K2 ¼ 1 and (b) K3/K2 ¼ 30. From eqn (6), the twist term

2), thin dashed blue line) is E3, saddle-splay term (�2K24j
2(R)/R2, thin

orange line) is 2g/R. The sum of these individual terms is the total E
tted, as indicated. The legend in (a) applies to both panels. We use the
m�1.
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Fig. 4 Variation of inverse cholesteric pitch q0 for four K3/K2 ratios as indicated by the legend in (c). Small point sizes indicate positive (unstable)
energies. (a) Radius of equilibrium fibrils R vs. inverse cholesteric pitch q0. (b) Equilibrium twist-angle at the surface j(R) vs. inverse cholesteric
pitch q0. (c) Parametric plot of j(R) vs. R as q0 is varied. Experimental data is also shown with black squares. Corresponding to the numbers in the
key, and as described in the text, the data comes from Mosser et al.6 (key 1), Bouligand et al.18 (key 2), Holmes et al.15 (key 3), and Raspanti et al.16

(key 4). (d) Negative of energy per unit volume, E, vs. inverse cholesteric pitch q0. Positive energies, that are unstable with respect to the
cholesteric, are not shown. In all subfigures, dashed black lines are from the small-angle linear approximation, eqn (14)–(16), while the dotted
black lines are from the numerical solution to the linear approximation. We use default parameters K2 ¼ 10 pN, K24 ¼ 10 pN, and g ¼ 3 pN mm�1,
and all plots are log-log. The shaded grey regions in (a) and (b) indicate the extent of experimental measurements of collagen fibrils.6,15,16,18
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each data point. Mosser et al.6 (key 1) grew collagen brils in
vitro from a solution from rat tail tendon. From their Fig. 6 we
extracted a radius of 175 nm with a twist-angle at the surface of
23� and a radius of 120 nm with a surface angle of 22�. Bouli-
gand et al.18 (key 2) grew collagen brils in vitro from a solution
of calf skin and from their Fig. 13 we extracted a radius of 50 nm
and a twist-angle at the surface of 16�. Holmes et al.15 (key 3)
used collagen brils from adult bovine corneas to measure a
bril radius of 18 nm with a surface twist-angle of 15�. Raspanti
et al.16 (key 4) found a radius of (19.35 � 3.7) nm with a twist-
angle at the surface of 17.9� � 3.4� for collagen brils from 6
day-old rat skin, a radius of (105� 10.9) nm with a twist-angle at
the surface of 18.4� � 2.8� from 16 week-old rat skin, a radius of
(25.2 � 3.7) nm with a twist-angle at the surface of 17.0� � 3.6�

for bovine aorta, and a radius of (48.35 � 5.6) nm with a twist-
angle at the surface of 17.0� � 1.25� for bovine optic nerve
sheath. The equilibrium model data in Fig. 4(c) is able to cover
the entire range of experimental data by variation of both q0 and
8506 | Soft Matter, 2014, 10, 8500–8511
K3. Neither K3 nor q0 alone can explain the experimental varia-
tion, but we anticipate signicant parameter variation due to
the widely varying experimental conditions involved. Other
parameters are explored below.

In Fig. 4(d) the energies per unit volume are plotted as q0 is
varied for different K3 values. On this log–log plot, only negative
energies that are stable with respect to the bulk cholesteric are
shown. The two lower K3 values have stable (negative) energies
for the entire q0 range plotted, while the two higher K3 values are
negative for most of the range but are positive at smaller q0. The
energies from the small-angle linear approximation, eqn (16),
are plotted as dashed lines and begin to signicantly disagree
with the numerical results for larger values of K3/K2. Neverthe-
less, at larger (negative) energies the approximate scaling of �E
� q0

4 from the small-angle linear approximation (eqn (16)) is
observed.

3.3.2 Surface tension g dependence. In Fig. 5 we vary the
surface tension g between 3–30 pN mm�1 for different values of
This journal is © The Royal Society of Chemistry 2014
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the inverse cholesteric pitch q0, as indicated in the legend in
Fig. 5(c). Fig. 5(a) shows the equilibrium bril radius R vs. g. We
see that R� g3, which is in good agreement with the small-angle
linear approximation of eqn (14) (dashed lines). For the bril
radius, the linear approximation is similar to the small-angle
linear and both recover the full model results. Qualitatively,
larger g values increase the equilibrium radius since the relative
contribution of surface to volume decreases with radius. The
shaded region of Fig. 5(a) shows the range of experimental
measurement of bril radii.6,15,16,18

Fig. 5(b) shows the twist-angle at the surface j(R) vs. g. As
expected, since larger radii lead to larger angles, the twist-angle
at the surface increases with g. The small-angle linear approx-
imation of eqn (15), indicated by dashed lines, gives an
approximate scaling of j � g, but detailed agreement is only
good at smaller values of g and larger values of q0. The linear
approximation alone shows a similar disagreement. While
some failure of the linear approximation is expected for the
larger (default) value of K3/K2 ¼ 30 appropriate for long tropo-
collagen complexes, we see that there is still good agreement for
Fig. 5 Variation of surface tension g for four q0 values as indicated by le
the cholesteric) energies. (a) Radius R of equilibrium fibrils vs. surface tens
g. (c) Parametric plot of j(R) vs. R as g is varied. Experimental data is s
Fig. 4(c). (d) Negative of energy per unit volume, E, vs. the surface tension
are not shown. For all subfigures, dashed black lines are from the small-an
the numerical solution of the linear approximation. We use default param
log-log. The shaded grey regions in (a) and (b) indicate the extent of exp

This journal is © The Royal Society of Chemistry 2014
smaller g values. The shaded region of 5(b) shows the experi-
mental range of bril surface angles.

Fig. 5(c) parametrically plots the twist-angle at the surface
j(R) against the radius R as g is varied. Variation of both g and
q0 is mostly able to cover the experimental data but, as with the
parameter variation in Fig. 4(c), a single curve is unable to
recover all the experimental data. The small-angle linear
approximation, as well as the linear approximation, are only
good descriptions of the data at smaller R and j. There, the
approximate scaling of the small-angle linear approximation
from eqn (14) and (15), with j � R1/3 as g is varied, is observed.

In Fig. 5(d) the equilibrium energies per unit volume are
plotted as g. Only stable (negative) energies with respect to a
bulk cholesteric phase are shown. As with the small-angle linear
approximation in eqn (16), we require smaller values of g and/or
smaller values of q0 for stability. The energy curves from the
linear small-angle approximation, eqn (16) (black dashed
curves), as well as the linear approximation (black dotted
curves), are qualitatively similar to our full model results but
differ signicantly as the energy decreases towards zero.
gend in (c). Small point sizes indicate positive (unstable with respect to
ion g. (b) Equilibrium twist-angle at the surface j(R) vs. surface tension
hown with black squares, with a corresponding key to the sources in
g. Positive energies, that are unstable with respect to the cholesteric,
gle linear approximation, eqn (14)–(16) and dotted black lines are from
eter values K2 ¼ 10 pN, K3 ¼ 300 pN, and K24 ¼ 10 pN, and all plots are
erimental measurements of collagen fibrils.6,15,16,18

Soft Matter, 2014, 10, 8500–8511 | 8507

https://doi.org/10.1039/c4sm01359j


Fig. 6 Variation of saddle-splay modulus K24 for three g values as indicated by legend in (c). Smaller point sizes indicate positive (unstable)
energies. (a) Radius R of equilibrium fibrils vs. K24. (b) Equilibrium twist-angle at the surface j(R) vs. K24. (c) Parametric plot of j(R) vs. R as K24 is
varied. Experimental data is shown with black squares, with a corresponding key to the sources in Fig. 4(c). (d) Negative of the energy per unit
volume, E, vs. K24. Positive energies, that are unstable with respect to the cholesteric, are not shown. For all subfigures, dashed black lines are
from the small-angle linear approximation, eqn (14)–(16) and dotted black lines are from the numerical solution of the linear approximation. We
use q0 ¼ 4 mm�1 and otherwise use default parameter values K2 ¼ 10 pN, K3 ¼ 300 pN, and g ¼ 3 pN mm�1, and all plots are log-log. The shaded
regions indicate the extent of experimental measurements of collagen fibrils.6,15,16,18
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3.3.3 Saddle-splay modulus K24 dependence. In Fig. 6 we
vary the saddle-splay constant K24 for several values of the

surface tension g. While21 K24 ¼ 1
2
ðK1 þ K2Þ, the splay modulus

K1 has no direct effect on the energetics of our divergence-free
double-twist bril structure. We can think of K24 variation as
implicitly varying K1 ¼ 2K24 � K2, with K24 ¼ K2 corresponding
to K1 ¼ K2 ¼ K24. Fig. 6(a) shows the bril radius R vs. K24. For
K24 T K2 ¼ 10 pN the radius R decreases signicantly, with
sharper decreases at larger values of K24 for larger g values.
Fig. 6(b) has the twist-angle at the surface j(R) vs. K24. For K24 T

K2 ¼ 10 pN, we observe a similar sharp decrease of j as K24

increases.
Using the small-angle linear approximation of section 3.1,

eqn (11) and (12) lead to a cubic equation for jlin
0 for the general

case when K24 s K2. Numerically solving the cubic36 for jlin
0

leads to the dashed black lines in Fig. 6 (a)–(d). The small-angle
linear solution agrees well with the full model results at lower
surface tensions g, but loses accuracy as the surface tension
increases. The agreement is better for R than for j(R). The linear
8508 | Soft Matter, 2014, 10, 8500–8511
approximation without the small-angle approximation, shown
with dotted lines in Fig. 6, differs little from the small-angle
linear approximation.

Fig. 6(c) parametrically plots the twist-angle at the surface
j(R) against the radius R as K24 is varied. Variation of g and K24

is able to recover some of the experimental data points, shown
with black squares. The black dashed curves from the small-
angle linear approximation of section 3.1 have a power law of 1/
4, which follows from eqn (12) combined with the linear
approximation j(R) ¼ jlin

0R. The model data appears to
approach this power law for lower R.

In Fig. 6(d) the energies per unit volume are plotted as K24 is
varied for different g values. The highest g value is not shown as
it does not have any negative energies. The magnitude of the
energies increases as g decreases and as K24 increases. As K24

decreases, the energy at each q0 value eventually becomes
positive, setting a lower limit on K24 for stability. Only a narrow
range of K24, close to K2, appears to give stable double-twist
brils.
This journal is © The Royal Society of Chemistry 2014
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3.4 Alternative radial bril structure models

With our model free-energy, it is straight-forward to address the
energetics of a proposed axial core with constant twist-angle
sheath model of collagen brils.24 For a core-radius RC and bril
radius R, we evaluate the Frank free energy eqn (2) using an axial
core with j(r) ¼ 0 for 0 < r < RC together with a constant twist-
angle sheath with j(r) ¼ j0 for RC < r < R. In the core, the free
energy density is fC ¼ K2q0

2/2. In the sheath, the free energy
density is f0 ¼ (K2/2)[q0 � (1/r)sin j0 cos j0]

2 + (K3/2)(sin
4 j0/r

2).
Signicantly, the saddle-splay term does not contribute since it
has equal and opposite contributions at the surfaces at RC and
at R. Since fC and f0 and the surface tension contributions are all
positive, the total free energy will also be positive for all values
of R, RC, and j0 — above the energy of the bulk cholesteric
phase. The same argument and conclusion also applies to a
constant twist-angle collagen bril model, where RC ¼ 0.
Neither the axial core constant twist-angle sheath model nor the
constant twist-angle model for collagen brils are stable equi-
librium phases with respect to the bulk cholesteric, or with
respect to the double-twist brils presented in this paper.
4 Discussion

At high concentrations collagen forms a cholesteric phase with
pitch between 0.5 and 2 mm,6 while at lower concentrations
tropocollagen complexes aggregate into packed brils.8 Fibril
radius depends on assembly conditions.8 Tropocollagen
complexes are tilted with respect the bril axis,14–18 which is
consistent with a double-twist structure for collagen brils.18

We propose that an equilibrium double-twist structure for
collagen brils is determined by a liquid-crystalline Frank free-
energy similar to that used for the blue phases of liquid crys-
tals.20–22,28 We use an Euler–Lagrange approach to minimize the
free-energy for a bril of a given radius R, and then numerically
minimize the free-energy per unit volume as a function of bril
radius as illustrated in Fig. 2(a). The existence of a clear
minimum as a function of R implies that the uniform bril
radius observed both in vivo and in vitro may be selected by
equilibrium free energy considerations. Our results show how
this minimum determines both the bril radius and the twist-
angle at the surface as system parameters are varied.

In studies of blue-phases, the director twist-angle is typically
assumed to be a linear function of radius.20–22,28 Although the
linear approximation is good close to the bril core, Fig. 2(d)
shows the twist-angle can signicantly deviate from linearity
near the bril surface. Nevertheless, with a small-angle
assumption and for equal twist and saddle-splay moduli (K2 ¼
K24), the linear approximation gives an analytical minimal free-
energy solution with power-law relationships between bril
radius R and twist-angle at the surface j(R) vs. the system
parameters. As shown in Fig. 4–6, the resulting power-law
scaling is a good approximation for most of the parameter
ranges and provides a useful guide for understanding the
relationship between radius and twist-angle at the surface. We
have also evaluated the linear approximation numerically and
found little difference with the small-angle linear
This journal is © The Royal Society of Chemistry 2014
approximation, indicating that disagreements with our full
model results are due to the linear approximation alone. This is
consistent with the relatively small twist-angles in our results.
We nd that the linear approximation is less accurate at higher
bend modulus (K3), lower inverse cholesteric pitch (q0), or
higher surface tension (g).

We expect that the bend modulus, K3, is large for collagen.
While the commonly used equal modulus approximation22,25

assumes that K3 ¼ K2, we know that molecules with large aspect
ratio can have K3 as large as 30K2.26,27 Fig. 4 shows that K3 > K2

appears to be necessary for our model to be consistent with the
experimental collagen bril radii and surface-twist angles.
Larger K3 values also lead to narrower energy wells, as illus-
trated in Fig. 3.

We can recover in vitro and in vivo experimental6,15,16,18 values
of bril radius R and twist-angle at the surface j(R) with
reasonable variation of many of our model parameters. Unfor-
tunately, the twist-angle at the surface and radius alone are not
sufficient to determine all of themodel parameters— so explicit
experimental control or measurement of model parameters will
be needed to assess our equilibrium model of radius and twist-
angle control in collagen brils. Here, we emphasize q0 and g

since they appear to be the most experimentally accessible
parameters in the collagen system, and we predict a robust
power law dependence of bril radius and twist-angle at the
bril surface for these two parameters.

As shown in Fig. 4, our model is consistent with experi-
mental results only over a roughly two-fold variation of the
inverse cholesteric pitch, q0. These q0 values are close to those
expected from the observed cholesteric collagen pitch.6 Quali-
tatively our model predicts an increase in radius and surface
twist-angle as q0 is decreased, which is consistent with
increased surface-twist angles in brils swollen with urea
solution.17 Nevertheless, q0 is difficult to vary by large factors.
Even over quite variable in vitro and in vivo conditions,35 the
pitch of DNA only varied by a factor of 10, and only over a factor
of 2 using concentration and ionic strength.34

The surface tension is investigated in Fig. 5. Higher surface
tensions lead to larger radii and twist-angles at the surface.
Variation of surface tension moves the model results through
the experimental measurements of surface twist-angle as a
function of radius. We expect that surface tension, reecting
surface energy of the bril, could be modied by surfactants, by
surface modications of collagen brils, and by the environ-
ment surrounding collagen brils. The range of surface
tensions that agree with experimental measurements puts
limits on the surface tensions of collagen brils and similar
protein aggregates — from 3 pN mm�1 to approximately 20 pN
mm�1.

Modications to bril surfaces would be expected to affect
the surface tension g but not the elastic constants. The reported
increase of collagen bril radius in animal models with
knockouts of proteoglycans37,38 are intriguing in this respect.
Proteoglycans decorate collagen brils,39 and so would be
expected to modify g. The reported increase of bril radius with
a decrease of proteoglycan37–39 is consistent, according to eqn
(14) and Fig. 5, with proteoglycans acting as effective surfactants
Soft Matter, 2014, 10, 8500–8511 | 8509
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that decrease the surface tension g. It would therefore be
interesting to measure bril radius dependence on proteo-
glycan for in vitro systems, where the twist-angle at the surface is
also assessed.

The elastic and surface parameters of our model are effec-
tive, or coarse-grained, properties of the bril. We consider only
tropocollagen alignment, and not the placement of individual
molecules. As such we effectively coarse-grain the well known
axial D-banding of collagen brils (see e.g. ref. 8). As D-bands
are not correlated with signicant modulations of radius along
the bril axis (see e.g. ref. 15 and 18), this appears to be a
reasonable approximation. We expect that mixtures of different
types of collagen would lead to different effective parameters
that will depend on the mixture. We suspect that this explains
the systematic variation of bril radius and twist-angle at the
surface observed with mixtures of collagen I and V.7 We note
that in vivo, the detailed environment of collagen brillo-
genesis40 in different tissue types may also signicantly change
effective parameters. This may be able to explain the particu-
larly small bril radius observed in the cornea, which variations
of bril composition alone are unable to replicate.7We note that
age-related cross-linking, important for mechanical properties
of collagen,41 will essentially lock in the equilibrium structure
even aer the microenvironment of the bril has changed.

Finally, our equilibrium double-twist model may also apply
to other brillar systems. For example, human hair orthocortex
macrobrils,42,43 composed of the intermediate lament
keratin, appear to have a double-twist structure. This is seen
also in wool.44–47
5 Conclusion

We use a liquid crystal model of collagen brils to compare to
experimental measurements of collagen bril radius R and
surface twist-angle j(R). Using an Euler–Lagrange approach and
numerical minimization, we demonstrate the existence of a
minimum in free energy as a function of bril radius R, sug-
gesting bril radius can be determined by the equilibrium free
energy. Large bend modulus, K3 in the liquid crystal Frank free
energy, and small surface tension g are found to be necessary to
agree with experimental measurements. By varying the model
parameters, most signicantly K3, g, and q0, the model is able to
recover the same range as observed in experimental measure-
ments. We expect that different tissue environments, collagen
type makeup of a bril, and other interacting proteins will lead
to different effective parameters in our model, and allow tissues
to vary the characteristics of equilibrium collagen brils.
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