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Phase-field collagen fibrils: Coupling chirality and density modulations
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To describe the interaction between longitudinal density modulations along collagen fibrils (the D band)
with a radial twist field of molecular orientation (double twist), we couple a phase-field crystal (PFC) with
liquid-crystalline free energies to obtain a hybrid model of equilibrium collagen fibril structure. We numerically
compute the resulting axial and radial structure. We find two distinct fibrillar phases, L and C, with a coexistence
line that ends in an Ising-like critical point. We propose that the coexistence between these phases can explain
the bimodal distribution of fibril radii that has been widely reported within tendon tissues. Tensile strain applied
to our model fibrils straightens the average fibrillar twist and flattens the D-band modulation. Our PFC approach
should apply directly to other longitudinally modulated chiral filaments, such as fibrin and intermediate filaments.
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Introduction. Collagen molecules assemble into cylindrical
fibrils, which exhibit a wide range of possible radii, R ∈
10–200 nm depending on the anatomical location in vivo
[1,2] and self-assembly conditions in vitro [3–6]. Collagen
molecules are chiral [7], and collagen fibrils are chiral ma-
terials. Collagen fibrils serve as building blocks in mechani-
cally loaded tissues such as tendon, skin, and bone [8]. The
crucial role of fibrils within the human body highlights the
importance of understanding the interplay of their chiral and
mechanical properties.

The chiral nature of collagen fibrils is evident in the tilted
alignment of individual molecules with respect to the fibril
axis [9–13]. This “twist” angle ψ can be as large as 17◦ at the
surface of corneal fibrils, and is approximately 5◦ in tendon
fibrils [2,14]. Theoretical work treating the fibril structure
as a chiral liquid crystal [11,13,15] has shown that twisted
fibrils can be thermodynamically stable, and predicts that
twist continuously varies within the fibril as a “double-twist”
field ψ (r).

Periodic density modulations along the fibril axis are ubiq-
uitous. These modulations originate from specific intermolec-
ular interactions, as described in the Hodge-Petruska model
[16]. The most prominent density modulation is known as the
D band. The D-band period is remarkably consistent for ex
vivo fibrils, between 64 and 67 nm [17]. D-band periods are
somewhat more variable for in vitro fibrils [18] and can be
manipulated by a mixture of different collagen types within
the fibril [6]. The “gap” and “overlap” regions of the Hodge-
Petruska model suggest a D-band modulation amplitude that
is 10% of the total density. However, a simple geometri-
cal interpretation of the Hodge-Petruska model also locally
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implies a D-band period d ∝ cos ψ (r) within an individual
fibril [2], whereas only a single D-band period is observed in
experiment. One previous model of both D band and double
twist therefore assumes a radially constant twist [19], though
this is energetically unfavorable for the double-twist field [13].
A second model has an approximately constant twist gradient
[9], which is energetically preferable for the double twist
but implies local stretching or compression of the D band
[2]. These two models of the radial twist ψ (r) represent the
opposite limits of a stiff or soft D band, respectively. How can
we explore the coupling of the D band and double twist more
generally?

While atomistic molecular dynamics (MD) simulations of
the D band, e.g., Ref. [20], can explore axial strain [21],
they currently ignore radial twist. This is because a contin-
ually varying ψ (r) precludes unit cells with small numbers
of molecules. Fortunately, coarse-grained phase-field crystal
(PFC) approaches for addressing periodic modulations of
crystalline materials [22] are compatible with coarse-grained
models of the radial twist. PFC models impose density mod-
ulations with coarse-grained fields, and so do not require
the inefficiently short atomic timescales of MD. PFC models
allow us to quantitatively explore both the mechanical and
structural properties of the fibril for arbitrary values of the
D-band stiffness.

Phase-field crystal fibril. PFC theory adds terms to the
coarse-grained free energy to generate a periodic structure.
PFC is particularly simple in one dimension, such as along the
collagen fibril. From the Hodge-Petruska model, molecules
pack along their long axis with a period d̃‖ = 67 nm in the
absence of molecular twist. We can write the PFC contribution
to the free-energy per unit volume as

Ẽpfc = 1

π R̃2L̃
�̃

∫
d3x̃φ̃(r̃)

(
4π2

d̃2
‖

+ ∇̃2
‖

)2
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+ 1
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where we integrate over a cylindrical fibril of radius R̃ and
length L̃, and φ̃ is the amplitude of modulations due to the D
band. ∇̃‖ is the gradient operator in the direction parallel to
the local molecular orientation. The first integral of Eq. (1)
is minimized when the modulations have the same local pe-
riodicity as d̃‖, and �̃ characterizes the D-band stiffness. For
χ̃2 > 0, the second integral is minimized when φ̃2 is nonzero,
which determines a preferred nonzero D-band amplitude. ω̃

characterizes the energetics of D-band formation.
We can further simplify these PFC contributions. Un-

der a single-mode approximation for the D band, we take
φ̃(z̃) = δ̃ cos(η̃z̃), where η̃ is the observed D-band wave
number. Furthermore, we work within the ansatz that the
molecular orientation is determined by the twist field, n =
sin ψ (r̃)φ̂ + cos ψ (r̃)ẑ [11,13]. Because the local orientation
is not along the fibril axis, this couples the D-band periodicity
to ψ (r) through the gradient in the frame parallel to n, ∇̃‖ =
cos ψ (r̃)∂/∂ z̃. We then obtain a simpler expression,

Ẽpfc = �̃δ̃2

2R̃2

∫ R̃

0
r̃d r̃

(
4π2
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‖

− η̃2 cos2 ψ (r̃)

)2
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2

(
3

4
δ̃2 − χ̃2

)
. (2)

To this we add the volume-averaged Frank free-energy
density for the double-twist director field (see Ref. [13]),

ẼFrank = 2

R̃2
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2
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, (3)

where K̃22, K̃33, and k̃24 are the usual Frank elastic constants
(twist, bend, and saddle splay, respectively). We also add the
average surface energy per unit volume due to free interfaces,
given by Ẽsurf = 2γ̃ /R̃, where γ̃ is the surface tension.

For the remainder of this Rapid Communication, variables
without a tilde will be dimensionless. We do this by measuring
energies in units of K̃22q̃2, measuring density in units of
χ̃ , measuring radius in units of 1/q̃, and the D-band wave
number in units of 1/d̃‖. Combining Epfc, EFrank, and Esurf ,
we obtain the total average free-energy density of the fibril
as a function of radius R, D-band modulation amplitude δ,
D-band modulation period 2π/η, and twist angle field ψ (r),
Etot = Epfc + EFrank + Esurf .

There are five dimensionless parameters that control the
behavior of our system. K33 ≡ K̃33/K̃22 and k24 ≡ k̃24/K̃22

characterize the bend and saddle-splay elastic constants.
Consistent with our previous work, we will fix K33 = 30
[13,23]. γ ≡ γ̃ /(K̃22q̃) controls the surface tension. � ≡
2�̃χ̃2/(3K̃22q̃2d̃4

‖ ) controls the coupling strength between the
D band and the molecular twist and can be related to the
Young’s modulus at zero twist. ω ≡ 2ω̃χ̃4/(3K̃22q̃2) controls
the strength of the D-band double-well potential, which can-
not be any larger than the polymerization energy of collagen
fibrils [24].

We minimize Etot with respect to ψ (r) for chosen initial
values of R, η, and δ using a numerical implementation of

the corresponding Euler-Lagrange equations [11], and obtain
ψ0(r). We then minimize E0 ≡ E [R, η, δ; ψ0(r)] with respect
to R to obtain a global (thermodynamic) minimization of Etot .
Our numerical minimization routines are available online via
GitHub [25]. The default parameter values, which apply un-
less otherwise stated, are γ = 0.04, k24 = 0.5, q̃ = 4 μm−1,
� = 600, and ω = 20, and are discussed below.

Coexistence. In Fig. 1(a) we show the phase diagram of the
PFC fibril model in the γ , k24 plane. The D-band modulation
leads to a coexistence line (indicated by the thick black line)
between qualitatively distinct fibril phases, which ends at
a critical point at γ c � 0.035, kc

24 � 0.26. This coexistence
line, along which the fibril radius and twist field changes
discontinuously, is not observed without the PFC terms [13].

For the default parametrization, indicated by a white star
in Fig. 1(a), we show the two coexisting twist-field solutions
which minimize Etot in Fig. 1(b). For smaller R (blue line),
the equilibrium twist field ψ (r) has an approximately constant
gradient and we call it the “linear twist” phase (L). For larger
R (orange line), ψ (r) has a large region of approximately
constant twist and we call it the “constant twist” phase (C).
From a molecular twist perspective, the C phase can be viewed
as a “core-shell” structure with the core showing a strong
linear twist gradient while the shell shows a constant twist,
albeit with a narrow region of additional twist gradient at the
surface.

Qualitatively, fibrils are energetically stabilized by surface
twist through k24 as well as by the D-band amplitude δ.
Larger values of surface tension γ drive larger R to reduce
the surface area per unit volume. These larger radii also lead
to increasingly large D-band elastic energy through �, which
can then be reduced by a region of constant twist.

The L and C twist fields are visualized schematically in
Figs. 1(c) and 1(d), respectively. The inset circles within
Fig. 1(a) indicate the axial D-band strain in a cross section of
unstretched fibrils corresponding to the blue (L) and orange
(C) curves of Fig. 1(b) (with D-band periodicity dL/d|| =
2π/ηL = 0.999 and dC/d|| = 2π/ηC = 0.997), respectively.
For the L phase, most of the fibril is strained ranging from the
center under axial compression of 0.3% to the surface under
tension of 0.1%. For the C phase, only the center and surface
are significantly strained.

Our coarse-grained free-energy approach does not include
any fluctuations, so we expect mean-field critical exponents
[26] to describe the discontinuities across the coexistence line
sufficiently close to the critical point. In Fig. 2, we show the
difference in radii of the coexisting linear and constant twist
phases, R∗

L and R∗
C , respectively, versus the distance from the

critical point t ≡ k24/kc
24 − 1. We find an Ising-like mean-field

critical exponent β = 1/2, as indicated by the dashed black
line. In the inset, we show the splitting of R into R∗

L and R∗
C

near the critical point. Near t � 3 we see that the ratio R∗
C/R∗

L
can be as large as 100.

Remarkably, the coexistence of widely different fibril radii
has been reported [27] (see also Refs. [28,29]) within tendon
samples. The ratio of radii increases with age, and approaches
5 for older tendons [27]. We propose that tendon fibrils are
in coexistence within our equilibrium model. Indeed, our
default parameters are chosen to approximately recapitulate
the tendon fibril properties. γ = 0.04 and k24 = 0.5 on the
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FIG. 1. (a) Phase diagram of the PFC fibril model in the dimensionless surface-tension vs saddle-splay elastic constant (γ , k24) plane. A
linear twist (L, indicated by darker blue shading) phase and constant twist (C, indicated by lighter orange shading) phase are separated by a
coexistence line (thick black line), which ends at the critical point γ c � 0.035, kc

24 � 0.26 (black circle). The inset fibril cross sections show
the equilibrium axial strain that maintains the constant D-band period 2π/η at (γ = 0.04, k24 = 0.5), indicated by the white star. The local
compression and tension are indicated by blue and red shading, respectively, as indicated by the scale bar, while regions with no local strain are
white. (b) ψ (r) for the coexisting linear (blue, dashed) and constant (orange, dotted-dashed) twist phases of the PFC fibril model corresponding
to the cross sections in (a). The constant twist phase has ψ (r) � ψ0 throughout most of the fibril (here, ψ0 ≈ 0.08 rad). Schematics of the
linear and constant twist fibril phases are shown in (c) and (d), respectively. Note that ψ (0) = 0 from energetic considerations, and that the
fibril radius in the C phase exceeds that in the L phase (RC > RL).

coexistence line are chosen to recover R∗
C/R∗

L � 4. Taking
q̃ = 4 μm−1 is consistent with in vitro studies of chiral ne-
matic collagen solutions [30], and leads to radii R̃C ≈ 106 nm
and R̃L ≈ 27 nm.

Elastic properties. We can probe the tensile response of our
model fibril to an applied strain ε. To do this, we axially strain
the fibril and D band while conserving volume by imposing
η = ηeq/(1 + ε) and R = Req/

√
1 + ε, where ηeq and Req are

the unstrained values. We then minimize Etot with respect to δ

and ψ (r) at these strained values of η and R.
Figure 3 shows the resulting stress σ̃ = dE/dε [Fig. 3(a)],

D-band amplitude δ [Fig. 3(b)], and volume average twist
〈ψ (r)〉 [Fig. 3(c)] versus strain ε. As ε increases, the fibrils
stiffen until they reach a maximum stress, after which the
fibrils are unstable. This stiffening is delayed in strain and

FIG. 2. The difference of fibril radii of the linear twist fibril phase
R∗

L and constant twist fibril phase R∗
C (green triangles) vs distance

t ≡ k24/kc
24 − 1 along the coexistence line shown in Fig. 1. The

inset shows the separate radii, as indicated. Near the critical point
(γ c, kc

24) the discontinuity across the coexistence line vanishes as t1/2,
as indicated by the dashed black line.

dramatically larger for the constant twist fibrils, giving rise to
two approximately linear regimes of stress versus strain. For
the linear twist fibrils, only the second regime is observed.
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FIG. 3. Mechanical and structural properties of linear twist (blue
dashed) and constant twist (orange dashed-dotted) tendon fibrils.
(a) Stress vs strain, (b) volume average tilt 〈ψ〉 vs strain, and (c) D-
band amplitude δ vs strain.
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Untwisting [decreasing 〈ψ〉, as seen in Fig. 3(b)] and
flattening of the D-band modulation (as seen in Fig. 3) occur
as strain increases. The untwisting and flattening with strain
result from the coupling between the D band and the radial
twist in our model.

By choosing � = 600 we effectively determine Ỹhigh ≈
100 MPa to be comparable with the maximal slope of Ỹ �
30 MPa observed in noncrosslinked fibrils [31], using K̃22 =
6 pN [13]. However, the observation of a significant low-slope
regime is also observed experimentally [31] with a compara-
ble Ỹlow � 1–5 MPa. Only ω is relatively unconstrained, but
that is because (data not shown) our results are qualitatively
independent of it. We take ω = 20.

Discussion. The phase coexistence (Fig. 1) that emerges
from the interaction between the axial D-band modulation
and the radial double twist results in strikingly different fibril
radii coexisting in thermodynamic equilibrium (Fig. 2) and
provides a natural explanation for experimentally observed
bimodal radius distributions of tendon fibrils [27–29].

Coupling the D band and twist fields also leads us to predict
that elastic strain straightens the twist field [Fig. 3(b)] and
flattens the D-band amplitude [Fig. 3(c)]. Qualitatively similar
strain straightening has been observed in recent synchrotron
x-ray scattering studies of corneal fibrils [32]. Similarly, re-
cent creep studies of modestly strained tendons completely
degrade the D band after several hours [33], which is also
consistent with our results.

We have found that coexisting phases have distinct twist
fields ψ (r), with the smaller radii fibrils qualitatively similar
to constant gradient models discussed by Raspanti [2], while
the larger fibrils are qualitatively similar to constant-tilt mod-
els proposed for corneal fibrils [10,19,34]. We find that the
equilibrium axial strain [Fig. 1(a) insets] within these fibrils
is quite distinct in local variation, though not in magnitude.
Both L and C fibrils are under considerable compression at
the center and tension at the surface.

We also find that the twist field has a dramatic impact on
the elastic response of fibrils, as seen when comparing the
L- and C-phase fibrils in Fig. 3(a). This contrast may not
be observed for in vivo fibrils where covalent crosslinking
greatly stiffens fibrils [35]. Nevertheless, carefully controlled
assembly conditions in vitro can achieve a wide range of fibril
radii and twist fields [13]. While coexistence has not been di-
rectly reported for in vitro assembly, there is a striking tenfold
increase in fibril radius over a narrow range of precursor con-
centration from 75 to 100 mg/ml [3]. This is consistent with
the discontinuity observed along coexistence in Fig. 2 and we
would therefore expect significant differences in the stress-
strain curves as well. Further exploration of in vitro assembled
fibrils may also offer a way of exploring the critical point of
Fig. 1(a), and of characterizing fluctuation effects there.

We can obtain a general relationship between the observed
twist-field and D-band periodicity by minimizing the first term

in Eq. (2) with respect to d/d|| = 2π/η,

deq/d‖ =
√

〈cos4 ψ〉/〈cos2 ψ〉, (4)

where this equation holds for all parameter values. Ap-
proximating the twist field as constant, we obtain dC/d|| =
cos ψ (R). Approximating the twist field as having a constant
gradient, i.e., ψ (r) = ar, we obtain dL/d|| = 1 − ψ (R)2/4 +
19ψ (R)4/288 + O(ψ (R)6). While we have not discussed
corneal fibrils so far, ψ (R) � 0.3, while dcornea/d|| =
64 nm/67 nm � 0.955 [2]. This indicates that corneal fibrils
are in the C phase, confirming results from a previous electron
tomography study [36].

While we have described the equilibrium fibril struc-
ture that minimizes Etot , we can expand around that min-
imum and consider equilibrium fluctuations. In particular,
consider D-band periods d = 2π (1 + u)/ηeq, where 2π/ηeq

is the equilibrium period. We have that E (u) − E (0) ≈
1/2Ỹ u2. Multiplying by the volume in a single D-band pe-
riod, and using the Boltzmann distribution we obtain P(u) ∝
exp [−u2/(2σ 2

d/deq
)], where

σ 2
d/deq

= kBT/(π R̃2d̃eqỸ ). (5)

With kBT ≈ 4.114 × 10−3 pN μm, R̃, and Ỹ , we obtain σC �
σL � 0.001. Atomic force microscopy (AFM) studies of un-
crosslinked fibrils have reported a narrow, approximately
Gaussian distribution of D-band spacings with a fractional
width σd/d‖ ≈ 1% [18], approximately tenfold larger than our
prediction. While this indicates that the coupling we have used
between the D band and twist field is plausible, it suggests that
additional physics is needed to describe the observed D-band
variability. One possibility is that the reported longitudinal
variability of mechanical properties along collagen fibrils [37]
may lead to an increased D-band variability as well.

We have seen that using a one-dimensional phase-field
crystal (PFC) approach to couple longitudinal D-band mod-
ulations with the radial twist field leads us to predict two
distinct structural phases for collagen fibrils: linear twist (L)
and constant twist (C). We find a phase coexistence between
L and C that could describe the bimodal radius distribution of
tendon collagen fibrils observed in vivo. It should be possible
to explore the critical point with in vitro fibril assembly
systems.

This PFC approach to the coupling of density modulations
with orientation fields could also be applied more generally
in chiral materials [38,39]. It should also directly apply to a
number of chiral self-assembling fibrillar systems that exhibit
longitudinal modulations, with only the parametrization to
be determined. These include fibrin [40,41], keratin filaments
[42], and nuclear lamin paracrystals [43].
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