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Nonequilibrium phase ordering with a global conservation law

A. D. Rutenberg
Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
(Received 11 March 1996

In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising model leads to an asymptotic
length scaleL~ (pt)¥?>~t¥3 at T=0 because the kinetic coefficient is renormalized by the broken-bond
density,p~L 1. ForT>0, activated kinetics recovers the standard asymptotic growthllavt’2. However,
at all temperatures, infinite-range energy transport is allowed by the spin-exchange dynamics. A better imple-
mentation of global conservation, the microcanonical Creutz algorithm, is well behaved and exhibits the
standard nonconserved growth law;-t*2 at all temperature$S1063-651X96)11007-3

PACS numbsg(s): 05.70.Ln, 05.50tq, 64.60.Cn

Globally conserved dynamics offers a useful test of ourchange satisfies global conservation. However, at low tem-
theoretical understanding of phase order[ig because it perature the asymptotic dynamics aetivated and cross
allows access to off-critical quenches without requiring dif-over to a different growth law at zero temperature.
fusive “model-B” transport of the order-parameter. Renor- At T=0, no exchanges that increase the energy are ac-
malization group(RG) [2] arguments show that adding glo- cepted. Starting from random initial conditions, aggregation
bal conservation changes neither the critical dynamics no®f spins takes place and the broken-bond densty will be
the asymptotic growth law after a quench into the orderecProportional to the domain wall density at late times,
phase. This has been confirmed by numerical sty@eghe P~L . Isolated spins with all bonds broken, of number
only change to nonconserved dynamics is to imposéensity N, will aggregate rapidly onto existing domains,
d({ $)=0 where, using spin languagé, is the local magne- tN*—pN, and may be ignored. Spins that are part of do-

tization ((¢) is its spatial average The standard “model- Main walls can exchange, but only with the fractjonf the
A" dissipative dynamics ared,¢=—T 6F/5p, where system that has broken bon@<., that are also on domain
t% )

F[{¢}]=fddr[(V¢)2+(¢2—1)2] The global constraint is walls). This rescales the effective kinetic coefficient by a

>3 - e .
imposed with a uniform magnetic field terid{ ¢), added to :‘:ahcg;)r of p~L - For T_B mﬁﬂétwe-rangszfal\fgasam e
. . g ge we thus expedt~(pt) (t/L) t*~, where
F. The fieldH(t), effectively a Lagrange multiplier, is de- {12 s the standard nonconserved grojith. This applies in
creased smoothly while the ordering progresses so as ré’ny dimension.
maintain(¢) constant. _ For T>0, thermal fluctuations provide partners for spin
With a global conservation law¢) is a tunable param- exchange and also allow exchange with bulk spins. These
eter that does not change the growth law but does affeGictivated processes will dominate after the broken-bond den-
scaled correlation functions and other aspects of the systensity becomes comparable to the equilibrium average. After a
One can use this to explore what “universality” entails in quench, this will result in a crossover from intermediate
nonequilibrium phase ordering systems. For example, with.~t'® growth to asymptoticL ~t'? growth. [The length
global conservation in Ising models, Sire and Majumiddr  scale is extracted from the scaling of the spherically aver-
have shown that the autocorrelation exporlerdepends on aged  correlation  function C(r,t)=(&(x)p(x+r))
the net magnetization. This authid] has found spatial an- =M?f(r/L), whereM is the equilibrium bulk magnetiza-
isotropy in scalar phase ordering systems that dependson. L is chosen so thaft(1)=1/2.] Results for quenches to
strongly on{ ¢). T, will be similarly affected — the dynamical exponent will
However, there has been uncertainty about how to implebe underestimated while relaxes towards equilibriurf@].
ment global conservation. Tuning a magnetic field to main- A renormalized kinetic coefficient alone will not affect
tain (¢) is impractical in computer simulations, due to the scaled correlations. However, Kawasaki exchange also al-
stochastic nature of most algorithms. Two alternative algofows infinite-range energy transfer through the system. For
rithms have been used for Ising models: a Creutz defiyn  example, aff =0, an isolated spiiifour broken bondsmay
and infinite-range Kawasaki spin exchange4,7. Differ-  hop freely through the system by spin exchange with bulk
ences between these two implementations at low temperapins(no broken bonds Similarly, a “bump” on a flat in-
tures has led to some confusion in the pak?,8]. In this  terface (with one broken boridmay hop to any other flat
report we clarify the situation. interface of the system. Effects of this energy transport might
For a two-dimensional Ising model on a square lattice show up at low temperatures in nonuniversal effects such as
consider infinite-range Kawasaki exchange dynarf8¢4,7:  spatial anisotropy in the late stages of the quefidh It is
two randomly selected spins are exchanged under heat-batimclear if nonlinear effects would change the autocorrelation
dynamics, i.e., with probability 11+ expAE/kgT)], where  results of Sire and Majumda#], who used this algorithm at
AE is the energy change under the spin exchange. The ex=0.
A faster and safer algorithm was proposed by Cr¢6iz
The system is coupled to a small spin reserybare of size
*Electronic address: adr@thphys.ox.ac.uk 2). Single spin flips accepted by normal kinetic Ising model
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FIG. 1. Length scaleL(t) for nonconservedstarg, Creutz FIG. 2. Scaled correlations, divided by the equilibrium magne-

(pluseg, Kawasaki T=0.9T. (triangle, and Kawasaki T=0 tization squared, from the latest times of simulations shown in the
(circles. The system sizes are 2048024, 512, and 513, re-  previous figure. Solid, dashed, dot-dashed, and dotted lines are non-
spectively, with at least 20 samples in each system. We also shogonserved, CreutzT=0, Kawasaki T=0, and Kawasaki
L/p for the T=0 Kawasaki quenclisquarel which approaches T=0.9T, respectively.

t2, as expected. The upper three lines shdfy while the lowest

line showst!. that all of the models have similar spherically averaged

. : . . scaled correlations(Anisotropies are too small to see for
dynamics are subject to the additional condition that the rex . )
y ) these critical quenchegb].) The correlations for the Ka-

quired spin changex2) can be extracted from the reservoir. : . . .
The dynamics of the system plus reservoir are microcanoni\fvasakl mod_el are slightly dlffere_nt_, ho_vvever, this seems to
e a transient effect(Strong finite-size effects in the

cal in the magnetization, and there are none of the questior{%_ . T
of energy transport that we have just raised for infinite-rang%&o(')ﬂf]gus?rgz:]é&ﬁsr the latest time shown, limit the dura-

Kawasaki exchangflO]. As a result the RG results directly In conclusion, we see that an infinite-range Kawasaki ex-

apply and a growth law of ~t''2 is indeed seef] hange implementation of global conservation laws has acti-
To check these arguments we simulated critical quencheg, 9 P g

i i i 1/3 —
with ($)=0, for nonconserved and also for globally con- vated kinetics, with an anomalous-t™~ growth atT=0. In

; : ._addition, Kawasaki dynamics leads to long-range energy
served systems with both Creutz and Kawasaki dynamlcs{ransport. The Creutz algorithm, on the other hand, is not

For off-critical quenches similar results apply. In Fig. 1 we activated and has no lona-range enerav transoort. It provides
see the asymptotic’® growth for T=0 Kawasaki exchange, g-rang gy transport. L p
a faster and better controlled implementation of global con-

and reconfirmt*? growth for the other cases. To test the ; L
rescaling of the kinetic prefactor in the Kawasaki algorithm,servatlon laws, and should exhibit the expedtétigrowth at
all temperatures.

we show a quench t6=0.9T. and alsd.//p for the quench
to T=0. Both of these approach the expect&d growth at This work was supported by EPSRC Grant No.
late times, though with a slow crossover. In Fig. 2, we seeGR/J78044.
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