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We determine the characteristic length scale, L(t), in phase-ordering kinetics for both scalar and
vector fields, with either short- or long-range interactions and with or without conservation laws.
We obtain L(t) consistently by comparing the global rate of energy change to the energy dissipation
from the local evolution of the order parameter. We derive growth laws for O(n) and other models,

including systems with topological textures.

PACS number(s): 64.60.Cn, 64.60.My

Systems quenched from a disordered phase into an or-
dered phase do not order instantaneously. Instead, the
length scale of ordered regions grows at a characteris-
tic rate as different broken symmetry phases compete
to select the ordered phase. During this process, en-
ergy is dissipated and topological defects, if present, are
destroyed. Traditionally, systems with scalar order pa-
rameters, such as binary alloys and Ising models, have
been studied [1-3]. In such systems, domains of both
phases grow and intervening domain walls, the character-
istic topological defects of scalar systems, shrink in total
area, dissipating energy. Recently, there has been a grow-
ing interest in systems with vector and more complex
order parameters which have defect structures such as
lines, points, and textures. A series of experiments [4,5]
and simulations [6-10] have been performed to explore
such systems. Of particular interest is the time depen-
dence, L(t), of the characteristic length scale. Knowing
this growth law provides a fundamental test of approxi-
mation schemes and a basis for further analysis. Growth
laws have been obtained in some individual cases [11-14],
but, to our knowledge, no unified theoretical approach
has existed before now. Note that while renormalization-
group (RG) treatments [13,15] predict the growth laws in
systems with conservation laws, they have not been ex-
tended to treat systems with no conservation laws.

In this Rapid Communication we develop an approach
to determine the characteristic length scale, if it exists,
for quenched systems with either scalar or vector fields,
with either short- or long-range interactions and with or
without conservation laws. We do this by considering
the time dependence of the energy as the system relaxes
towards its ground state. We first evaluate the depen-
dence of the energy on the length scale by considering
topological defects, which set the energy scale when they
exist. Assuming an arbitrary growth law, we then com-
pare the global rate of energy change to the energy dis-
sipation from the local evolution of the order parameter.
From this we self-consistently determine the growth law
of the length scale, L(t). We present our results with
continuous parameters to facilitate setting up and test-
ing approximation or RG schemes. However, we do not
use any approximation schemes in our approach, relying
only on simple scaling assumptions.

Our results are summarized in Tables I and II. We
find power-law growth laws, independent of the spatial
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dimension of the system, in which long-range forces and
conservation laws are relevant in certain regimes. For
the marginal cases, logarithmic factors are introduced.
The power-law factors of our results are consistent with
existing work. Physical arguments yield growth laws of
L ~ t'/2 for nonconserved [12] and L ~ t'/3 for conserved
[11] scalar order parameters. For scalar systems with gen-
eral conservation laws, simulations and local approaches
[3] agree with our results. RG arguments [13] reproduce
the t/3 law for conserved scalar fields, predict L ~ t!/4
for a conserved vector field, and also treat conserved sys-
tems with long-range interactions [15]. Simulations [6]
suggest a L ~ t'/? growth law for nonconserved vector
fields, and simulation [7] and experiments [4] obtain the
same law for the related tensor fields that describe ne-
matic liquid crystals. This result has also been obtained
by approximate treatments for general n [16] and verified
in the large-n limit [14]. Our approach provides a simple
theoretical basis for these results, and also determines
any additional logarithmic factors.

A generic energy functional for such a system with an
n-component order parameter, $(§:‘), and short-range in-
teractions, is

H{f| = / dz (V)7 + V(D) (1)

where V() is a “mexican-hat”-shaped potential such as
V(¢) = (¢* — 1)2. After a temperature quench into the
ordered phase, the equation of motion for the ordering
kinetics of the Fourier components @ [17] is

Qi = —k* (0H/84_x), (2)

where we consider systems with purely dissipative dy-
namics. We work at temperature T = 0, with no ther-
mal noise, since T appears to be an “irrelevant variable”
for ordering kinetics within the ordered phase [13,14].
The conventional nonconserved (model A) and conserved
(model B) dynamics are p = 0 and p = 2, respectively,
but any p > O represents a global conservation law [3].
The dynamic scaling hypothesis describes most phase-
ordering systems in the late stages of growth [18]. Ac-
cordingly, the correlation function of the order param-

eter, C(r,t) = <$(x, t) ~$(x+r,t)>, with an average
over initial conditions, should exhibit the scaling form
C(r,t) = f(r/L(t)), with a single characteristic length
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scale L(t). Fourier transforming this, we obtain
the scaling form for the structure factor S(k,t) =

(de(t) - -(t)),

S(k,t) = [L(t)]? g(kL(?)) , 3)

where d is the spatial dimension.
Integrating the rate of energy dissipation from each
Fourier mode, and then using the equation of motion

(2), we find
de dt = /k ((0H/04x) - 0:dc)

=_Ak_

where € = (H) /V is the mean energy density, and [, is
the momentum integral [ d?k/(2m)¢. We will calculate
the scaling behavior of de/dt using the integral on the
right-hand side of (4) and also by calculating € directly as
an appropriate integral over the structure factor, S(k, ).
For each approach, either the integral converges in the ul-
traviolet (uv) and the dependence on the scale L(t) can
be extracted using scaling forms (3) or (8), or momenta
on the order of the uv cutoff dominate the integral. This
small-scale structure will only come from topological de-
fects. For instance, S(k,t) is proportional to the density
of defect core, pger ~ Ld'"/Ld ~ L™ for kL > 1 [19].
The scaling form (3) then implies

S(k,t) ~ L™ E~(d+n) |

® <3t$k'at$—k> ) (4)

kL > 1 (5)

which is a generalized Porod’s law valid for n < d, where
singular topological defects exist [20,21]. We limit our
approach to these cases, unless otherwise mentioned (see
below).

We first calculate the scaling behavior of the energy

2
“ . d 2
(ohc-0d) = 1(%) (o

AN
dt oL?

~ L™ k—(d+n—2) (dL/dt)2

To get the second line we recognize that if the kL > 1
limit is probing isolated defects [19], i.e., defects which
are locally flat or well separated with respect to their core
size, then the significant part of the two-time function is
just proportional to the defect core density, pges ~ L™ ™.

In which cases is it appropriate to use the comoving
field of an isolated defect, as we have effectively done in
Eq. (9)?7 Certainly if n > 2 the energy density (7) and
hence dissipation are dominated by variations at scale
L(t), the scaling form (8) can be used, and the question
is irrelevant for our argument. For n < 2, the rate of
energy dissipation can be written as the rate of change
of the energy of all the defect features,

density, €, which is captured by that of the gradient term
in (1):

e~ {((V9?),
= / K2L4g(kL), (6)
k
where we have used the scaling form (3) of the structure

factor. We then use (5) and impose a cutoff at k ~ 1/¢,
where £ is the defect core size, to obtain [21]

L'”{" 2 n<2
€~ -2 ln(L/{) , n=2 (7
L R n>2.

We see that the energy is dominated by the defect core
density, pgef, for n < 2, by the defect field at all length
scales for n = 2, and by variations of the order parameter
at scale L(t) for n > 2.

We now evaluate the right-hand side of the energy-
dissipation equation (4) in a similar way. Using
the scaling assumption for the two-time function,

<$k(t) -$_k(t’)> = k~4§(kL(t), kL(t') ), we find

(0b-0d) = o] (Bl
= (dL/dt)*L* %h(kL). (8)

If the integral in (4) converges we use (8) and change
variables to obtain de/dt ~ L*~%(dL/dt)?. When, and
only when [25], the momentum integral in (4) diverges in
the uv, we evaluate (8) in the kL >> 1 limit by expressing
the derivatives in terms of the length scales and changing
to sum and difference variables, L = [L(t) + L(t')]/2 and

= [L(t) — L(t')]/2:
92 >
W) A=0 <¢" ' ¢_k>L A
1
W) Aco —L_ﬂ—];mb(kA), kL >1
kL>1. (9)

de/dt ~ 2 /°° din(l,t)e(l),

/ dlag l t) oy
Bs(l)

~ j(&)e(§) +/€ dlj(l,t) ) (10)

where n(l,t) is the number density of defect features of
scale I, €(l) ~ 197" is the energy of the defect feature
[with a In(l/€) factor for n = 2], and j(I) is the num-
ber flux of defect features. We have used the continuity
equation, 8n/8t + 85/8l = 0, to obtain the second line
in (10). The total number density of defects, N, scales
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as the inverse volume, N ~ 1/L¢, and hence N is slowly
varying for times of order L/ L. Since defects only vanish
at the core scale ¢, we have N ~ j (§). This implies that
j(1) is independent of ! for | « L, in order to provide a
constant rate of defect extinction.

For d > n, the integral in (10) is well behaved at | < L
and the integral dominates the j(£)¢({) term. Hence
structures with scales and separations ! ~ L(t) dominate
the energy dissipation, and looking at isolated defects
in the kL > 1 limit is appropriate. Note that the uv
divergence of the integral in (4) in these cases is due to the
internal structure of an isolated stable defect—dissipation
is dominated by the motion of defect cores, not by the
annijhilation of small features.

However, for n < 2 with n = d, (l) ~ const and dissi-
pation is dominated by the j(£)e(£) term in (10) which
describes defect pairs annihilating. Since the dissipation
occurs at separations | ~ £ € L we cannot use a single
defect description of dissipation as in (9). In fact, since
the energy of a defect pair does not depend on the separa-
tion [ for I > £, we expect the system to be disordered,

L 4 (006 ) ~

provided n < d so that singular topological defects exist.
For the first two cases the integral is uv divergent and we
have imposed a cutoff at £ ~ 1/¢ and used the kL > 1
form (9), and for the remaining case the integral is uv
convergent and we use the scaling form (8).

We compare the rate of energy dissipation between
(11) and the time derivative of (7) to obtain dL/dt and
hence L(t). The results are summarized in Table I.

For nonconserved fields (1 = 0), we find L ~ /2 for all
systems (with d > n or n > 2). Leading corrections in the
n = 2 case are interesting: the In L factors in (7) and (11)
will in general have different effective cutoffs, of the order
of the core size £. This leads to a logarithmic correction
to scaling, L ~ t*/2[1 4+ O(1/Int)], and may account for
the smaller exponent (~ 0.45) seen in simulations of O(2)
systems [6,7].

For conserved fields (> 0) our results agree with the
the RG analysis [13], with additional logarithmic factors
for the marginal cases. We see that the conservation law
is only relevant for n + p > 2. Simulations by Siegert
and Rao [9] for n = 2, with d = 3 and u = 2, obtain
growth exponents slightly over 1/4, which is not incon-
sistent with our predicted L ~ (¢Int)'/* behavior.

The above discussion covers systems with purely short-
ranged interactions. We can also add long-ranged inter-
actions to our energy functional (1) [15]:

TABLE I. The growth law of the length scale L(t) for var-
ious number of components, n, and conservation laws, u [see
Eq. (2)]. Note that n = d is excluded for n < 2.

with an equilibrium density of defects, at any nonzero
temperature. At T = 0 we expect slow growth laws that
depend on the details of the potential V((f;) These cases,
including the one-dimensional (1D) Ising model, are at
their lower critical dimension and are outside the scope
of our approach.

The 2D XY model (n = d = 2) is a special case. The
logarithm in the energy of a vortex pair, €(l) ~ In(l/€),
leads to a logarithmically divergent integral in (10) for
| « L, and we see that structures at all scales between ¢
and L(t) are significant for the energy dissipation. In this
case, we doubt the validity of (9) which depends on the
kL > 1 limit being a single defect property. As a result
we cannot address the 2D XY model. It is interesting
that numerical work by Blundell and Bray [22] for the
nonconserved case shows a lack of scaling with respect to
the defect density. In addition, there are indications of
a systematic scaling violation for the conserved (u = 2)
case [8].

With the exception of the above cases, n = d < 2, we
find

J
L gmt =2 (dL/dt)? | n+p <2
L™ In(L/€) (dL/dt)? , n+p =2
LF=2(dL/dt)?

(11)
n+p>2

Hyr ~ /ddz/ddr [(x + 1) — ¢(x)]?

Td+¢7 )

(12)

which apparently dominate when o < 2. The calculation
(11) of the right-hand side of (4) is unchanged, but the
mean energy has a new contribution,

ELR ~ /k” S(k,t) , 0<2. (13)
k
This leads to, using (3) and (5),
L" E-n—cr , n<o
eLr~{ L™ In(L/¢), n=0 (14)
L=, n>ag

which actually dominates (7) for 0 < n when n < 2. We
then compare the rate of energy dissipation, still given by
(11), and the time derivative of (14), to find dL/dt and
determine Table II. Our discussion about the validity of
the kL > 1 limit in (9) carries over. Our results agree
with the leading power laws from an RG treatment by
Bray [15] of the conserved case (1 > 0), but for n < 2 we
disagree with the approximate calculation by Hayakawa
et al. [23]. It is also interesting to note that simulations
suggest that a new length scale may break scaling for
o < 1 [24]. However, preliminary numerical work [25]
indicates that the scaling regime may only be reached in

TABLE II. The growth law of the length scale L(t) for
long-range forces, 0 < o < 2 [see Eq. (12)], with various
number of components, n, and conservation laws, u. Note
that n = d is excluded for n < o.

L(t) n<2 n=2 n>2 | L(t) n<o n=o n>o |
n+pu<2 172 n+p<?2 172 (tlnt)l/Z $1/(2Fo—n)
n+p=2 (t/Int)*/? t1/2 n+p=2| (t/Int)'/? $1/2 (t/ )Y/ (+m
n+p>2 tt/(nte) (tlnt)l/(2+e) /(e n4+p>2 1/ (ntw) (tInt)l/(n+e) 1/ (o)
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larger systems than have been treated.

We can also address systems with topological textures
(n = d + 1), even though the appropriate Porod’s law
is not known. Since defects with n > d must be spa-
tially extended and without a singular core, they will
have a smaller large-k tail to their structure factor S(k,t)
than any defects with cores. So for n > 2 (or more pre-
cisely when n > o and n + g > 2), when the momen-
tum integrals for defects with cores converge for kL > 1,
the growth law for systems with textures will be given
by using the scaling forms (3) and (8) in (4) to obtain
L ~ t/(@+r) where ¢ = 2 for short-ranged forces. We
can also apply this result to systems without topological
defects (n > d + 1) which similarly have convergent mo-
mentum integrals for kL > 1. As a result, Tables I and
II will apply to all systems of physical interest, except
perhaps for the case of d = 1, n = 2. Indeed, this case
has an anomalous growth law for pu = 0 [26] related to
the breakdown of the scaling form (8) [25]. Of course,
whether the scaling assumptions hold, as in (3) and (8),
in other cases remains an open question.

The generality of our results deserves emphasis. Since
our derivation is independent of the initial conditions, it
also applies equally to critical and off-critical quenches
as long as the system scales at late times. Our approach

can also be applied to systems with more complicated
order parameters than n-component vectors. The details
of the energy functional (1) are unimportant [27]; all we
need is the existence of some short- or long-ranged “elas-
tic” energy (o), a conservation law (u), and the defect
structure if any. We can also treat systems with more
than one defect type. We simply calculate both sides of
(4) with the defect type that dominates the energy and
energy dissipation, which is the one represented by the
smallest n.

For example, in bulk nematic liquid crystals, the exis-
tence of string defects leads to (5) and (9) with n = 2,
which with no conservation law implies a L ~ t1/2 growth
law, consistent with recent experiments [4] and simula-
tions [7]. Similarly, in Potts models the existence of do-
main walls leads us to use our results for scalar (n = 1)
systems, consistent with the L ~ t/2 growth seen in
simulation [28].

In summary, by focusing on the total energy dissipa-
tion, rather than the detailed dynamics of the system,
we obtain growth laws for phase ordering. Our method
applies to systems satisfying simple scaling hypotheses.

We thank R. E. Blundell, D. A. Huse, H. H. Lee, and
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