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A B S T R A C T   

The gradual accumulation of damage and dysregulation during the aging of living organisms can be quantified. 
Even so, the aging process is complex and has multiple interacting physiological scales – from the molecular to 
cellular to whole tissues. In the face of this complexity, we can significantly advance our understanding of aging 
with the use of computational models that simulate realistic individual trajectories of health as well as mortality. 
To do so, they must be systems-level models that incorporate interactions between measurable aspects of age- 
associated changes. To incorporate individual variability in the aging process, models must be stochastic. To 
be useful they should also be predictive, and so must be fit or parameterized by data from large populations of 
aging individuals. In this perspective, we outline where we have been, where we are, and where we hope to go 
with such computational models of aging. Our focus is on data-driven systems-level models, and on their great 
potential in aging research.   

1. Introduction: Challenges of studying aging 

Computational models are essential to make state-of-the-art pre
dictions or to understand mechanisms within complex non-linear, sto
chastic, and interconnected systems such as the economy, the weather, 
or the climate. In this section we outline how aging organisms also 
represent complex, interconnected dynamical systems that are chal
lenging to study. 

Aging populations exhibit increasing mortality rates. For humans, 
the risk of dying increases approximately exponentially for older ages – 
the famous Gompertz law of mortality (Kirkwood, 2015). Before death, 
individual health can be assessed and summarized in many ways. One 
such measure is provided by the Frailty Index (FI) which is the pro
portion of “things wrong” from a large selection of possible age-related 
deficits of health and function (Mitnitski et al., 2001). The FI is robust, 
flexible, and is strongly correlated with various outcome measures 
including mortality (Rockwood et al., 2005; Evans et al., 2014). Alter
natively, Biological Age (BA) is an “effective age” defined in terms of an 
individual’s health, often using molecular aspects of health such as 
epigenetic methylation (Hannum et al., 2013; Horvath, 2013; Levine, 
2020). Other summary measures of health have been developed, 
including allostatic load (McEwen and Stellar, 1993), and physiological 
disregulation (Milot et al., 2014). Different summary measures of health 

are not necessarily strongly correlated with each other at the individual 
level (Li et al., 2020), indicating that aging is a multi-dimensional 
process. 

As assessed by the FI, the distribution of health measures broadens 
with age, corresponding to distinctive individual trajectories of health 
(Rockwood et al., 2004). Worsening health over an individual’s life is a 
random process, and is described as a stochastic accumulation of dam
age. It is thought that this damage underlies the increased mortality with 
age that is characterized by Gompertz’s law (Gavrilov and Gavrilova, 
2001). 

Remarkably, even relatively simple empirical observations about 
aging and mortality are not well understood. Resolving the question of 
whether Gompertz’s law applies for extremely old populations or 
whether they exhibit a mortality deceleration or plateau remains chal
lenging due to small data-sets (Gavrilov and Gavrilova, 2019). The 
‘mortality-morbidity paradox’ whereby female populations live longer 
than male populations, despite male populations apparently having 
better health, remains largely unexplained (Gordon and Hubbard, 2018; 
Gordon et al., 2017; Kulminski et al., 2008). The mechanisms behind 
historically changing health and mortality within national populations 
(Crimmins, 2015; Colchero et al., 2016), or behind differences between 
different socio-economic groups within a population (Andrew et al., 
2012), are difficult to assess. 
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We see four big questions in aging research: how can we better 
observe health and mortality across large populations, how can we 
better understand the mechanisms or causes underlying what we 
observe, how can we better predict outcomes at an individual or pop
ulation level, and, finally, how can we better intervene to decrease 
mortality and to improve health during aging? The challenges implicit in 
addressing these questions are interconnected: progress in any of these 
directions will support and direct progress in the others. 

Success in aging research crucially depends on the broad availability 
of high-quality data. National studies, especially those that include 
longitudinal data on study participants, such as the CSHA (Canadian 
Study of Health and Aging Working Group, 1994), CLSA (Raina et al., 
2009), NHANES (Centers for Disease Control and Prevention National 
Center for Health Statistics, 2014), BLSA (Ferrucci, 2008), ELSA (Step
toe et al., 2014), and the UK Biobank (Sudlow et al., 2015), are of 
increasing importance and utility. Emerging sources of “big”-data 
include electronic health records (EHR) (Clegg et al., 2016), molecular 
’omics, and individual telemetry provided by health monitors or cell
phones. How and what can we learn from these new sources of aging 
data? 

There are also many scales of health measures to consider: from 
molecular and cellular, to tissue, to organismal – including functional or 
social aspects of the organism. For example, at the molecular scale 
methylation clocks have emerged as convenient epigenetic hallmarks of 
health and aging (Hannum et al., 2013; Horvath, 2013). Other 
high-throughput technologies such as genomics, transcriptomics, pro
teomics, metabolomics, and microbiomics provide ways of measuring 
large amounts of data in aging studies (Livshits et al., 2018; Lehallier 
et al., 2019; Ahadi et al., 2020). Conversely, clinically relevant aspects of 
health such as activities of daily living (ADL) and other measures of 
functional disability are particularly important to the aging of individual 
older adults. Such ‘higher’ levels of function are dependent on many 
aspects of ‘lower-level’ biological and molecular function in a variety of 
tissues. How can we relate and usefully combine observations at 
different scales? 

Continuing the historical advances in either life expectancy or 
healthy-aging will be increasingly challenging but, naturally, is of great 
interest to the geroscience community. Targeted interventions for aging 
individuals will often be in the context of significant comorbidities or 
polypharmacy. Systemic treatments such as exercise (Fried, 2016; Par
tridge et al., 2018), caloric restriction (Most et al., 2017; Mattson et al., 
2017), or senolytics (Xu et al., 2018), act at cellular or molecular scales 
but the desired effects are often at the organismal scale. Understanding 
how different scales of organismal function interact with each other as a 
dynamical system should help us to effectively translate advances from 
one scale to another, and identify interventions that target the 
lower-level biological function before it manifests as functional 
disability (Ferrucci et al., 2018). Optimal interventions will likely 
depend on the health-state and age of the individual. How can we best 
provide individualized medicine for aging individuals? 

Animal models of aging have instructive similarities and differences 
with respect to human aging (Cohen, 2018). Furthermore, efficient 
automated image analysis is starting to lead to high-quality longitudinal 
studies of model organisms (see e.g., worms Swierczek et al., 2011; 
Zhang et al., 2016, or flies Seroude et al., 2002). Developing insights 
from frequently-measured high-dimensional organismal health states 
within large model populations will require new suites of analysis and 
modelling tools, but should yield deeper understanding of the aging 
process. Simple animal models are particularly amenable to studying the 
multi-scale effects of controlled interventions. 

Given the complexity of the aging process, how can computational 
models make use of available and emerging sources of data in order to 
improve our understanding of aging within and between populations or 
species, to better predict individual aging outcomes, and to both un
derstand existing interventions and to develop better individualized 
interventions in the aging process? Table 1 summarizes some of the 

particular challenges facing us in developing computational models of 
aging organisms, together with the potential benefits of meeting these 
challenges. We will return to these challenges in more detail at the end 
of this perspective. 

2. Theoretical approaches to aging 

Conceptual models such as the hallmarks of aging (López-Otín et al., 
2013), seven pillars of aging (Kennedy et al., 2014), or damage accu
mulation (Kirkwood, 2005) can provide powerful frameworks for dis
cussion or interpretation of quantitative results, but they are not 
typically quantitative themselves. While they organize how we think 
about aging, they do not directly help us to quantitatively characterize 
observed data or to make quantitative predictions. 

The lightest quantitative models are largely descriptive, or 
phenomenological. An example is Gompertz’s exponential increase of 
mortality with age for older adults (Kirkwood, 2015). This is not an 
exact model over any age range, but it is a useful approximation. Related 
to that is the Strehler-Mildvan correlation between the amplitude and 
exponent of the Gompertz law (Tarkhov et al., 2017), or the discussion 
of maximum human lifespan (Dolgin, 2018). Such phenomenological 
models beg explanation of mechanisms, but typically do not provide or 
require that explanation themselves. Furthermore, such simple quanti
tative models are not able to describe multiple organismal scales of 
aging. For example, they describe mortality but not health. As a result, 
they are not typically useful for predicting individual health outcomes. 

Predictive models of aging make stronger quantitative assumptions. 
An example is the proportional hazards model (Cox, 1972). A review of 
mortality models is provided by Yashin et al. (2000). Yashin and col
leagues also developed the quadratic hazards model (or stochastic pro
cess model, SPM) of aging (Yashin et al., 2012; Arbeev et al., 2016). It 
assumes that individual deviations from age-dependent norms of phys
iological measures interact with and exacerbate each other. The SPM is 
an example of a dynamical model of aging. 

2.1. Dynamical models of aging 

Dynamical models can be used to explicitly simulate individual 
health trajectories vs. age, i.e. longitudinal data. Because they can 
generate synthetic individual health data, they can serve much the same 
role as model organisms – whereby differences with respect to human 
aging can be significant but are hopefully also informative. 

Dynamical models can build in explicit interpretable “mechanisms”. 
These do not necessarily need to be fundamental biological mechanisms, 
but can be “effective” mechanisms relating variables that interact indi
rectly. Any success of a dynamical model in reproducing real-world 
phenomena then suggests the viability of these underlying mecha
nisms, and allows the modeller to explore other phenomena that arise 
from the same mechanisms. While such mechanisms cannot be imme
diately taken as real, the model can be used to identify further 

Table 1 
Some challenges and promise of complex computational models of aging  

Challenges Promise 

Using large heterogeneous and sparse 
longitudinal datasets 

Better individualized predictions  

(using E-health and self-reported 
data) 

Making population context explicit Better population health  
Better synthetic populations 

Including multiple scales Better translation of lab-based 
interventions 

(e.g., cellular to functional)  
Understanding mechanisms  
Predicting and understanding effects of Personalized treatment 

health interventions Improved treatment of 
comorbidities  

S. Farrell et al.                                                                                                                                                                                                                                  
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experiments and data to test predictions arising from the mechanisms. 
The concept of interactions between health measures can be 

embodied in a network of pair-wise interactions, where nodes (or 
“vertices”) are the health measures while the interactions are connec
tions between nodes (links, or “edges”). These interactions can be gen
eral, and not just the multiplicative interactions usually considered in 
regression models. Such explicit networks were already used to model 
mortality (Gavrilov and Gavrilova, 2001; Vural et al., 2014). We 
developed what we now call a generic network model (GNM) to also 
model health measures such as the FI, and found that we could describe 
both population-level aging and mortality with a simple network of 
interactions that could be implemented on a computer to generate large 
synthetic populations (Taneja et al., 2016; Farrell et al., 2016, 2018). 

The health attributes (nodes) of our GNM did not directly correspond 
to specific observed health attributes. The reason for that approach was 
simplicity: all connected nodes have similar interactions, with simple 
undirected connections of equal weight, as illustrated in Fig. 1. This 
enabled us to capture population-level health and mortality with only a 
few parameters. Such generic networked models are useful for concep
tual explorations of aging, and have been used to understand mortality 
curves in different species (Vural et al., 2014; Stroustrup et al., 2016), to 
explore the mutual information between health states and mortality 
(Farrell et al., 2018), and to explore how to increase longevity through 
optimized maintenance (Sun et al., 2020). Nevertheless, they are not 
able to capture realistic individual health states or model their detailed 
trajectories with age. 

To be able to predict detailed individual health states, we would need 
to empirically capture the many distinct interactions between observed 
individual health attributes within a population. Reconstructing 

interactions from observed data is a daunting prospect. If hundreds of 
individual health attributes are measured, then there are tens of thou
sands of interactions to determine between all possible pairs of attri
butes. Initial progress is already being made on smaller-sized problems. 
Using only cross-sectional binarized health data, we have developed a 
network model that includes specific observed health attributes (Farrell 
et al., 2020). To accomplish this, the model parameters are distinct for 
each node and the network connections between nodes are distinctly 
weighted. An illustration of such a “weighted” network model (WNM) is 
shown in Fig. 2 for 10 nodes. 

The WNM can be used to generate synthetic individual health tra
jectories until mortality from any starting point. For example, in Fig. 3 
we illustrate the joint distribution of the FI at death and the death age for 
four individuals with specific baseline deficits at their baseline ages 
(either 65 or 85 years). We see how both baseline age and deficits affect 
both the death age and the overall health at death. Intriguingly, the most 
likely FI at death for the older individuals is 1, which is well above 
typically reported FImax ≈ 0.7 (Stubbings et al., 2020). Since we use only 
10 deficits, the observed FImax of this data is 1, but this does not explain 
the peak of the distribution at 1. The FI at death for individuals in this 
data is not observed, so this may be a prediction of a real effect related to 
terminal decline (Stolz et al., 2020) – however it may also partially be an 
artefact of over-simplified damage-rates within the model for in
dividuals at higher FI (see discussion in Farrell et al. (2020)). 

We can also look more closely at how health evolved up until death. 
These frailty trajectories are shown in Fig. 4, for individuals who died at 
their median predicted death age. This illustrates how baseline indi
vidual health and age can strongly affect subsequent health trajectories, 
and also how variable those trajectories are. 

Fig. 1. Links (grey lines) between nodes (cir
cles) in a generic network model (GNM) of 
aging. Shown are a selection of 112 nodes, out 
of 104 used in the model. Nodes do not repre
sent particular observed health variables, but 
larger circles indicate nodes with more links. 
The most connected nodes are coloured orange, 
and are used in the aggregate health measure 
(frailty index, or FI) of the GNM. Note that the 
links do not change with age, while the binary 
health-states of the nodes do change with age 
between healthy and unhealthy. This model, 
with stochastic damage rates that can be 
implemented computationally (Taneja et al., 
2016; Farrell et al., 2016, 2018), can generate 
large synthetic populations that reflect observed 
population-average age-dependent health and 
mortality rates.(For interpretation of the refer
ences to color in this figure legend, the reader is 
referred to the web version of this article.)   

S. Farrell et al.                                                                                                                                                                                                                                  
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While these synthetic populations resemble observed aging human 
populations, we are not yet able to robustly infer specific interactions 
between the observed health attributes. Instead, we find that many 
different networks are consistent with the observed data. We are 
currently developing a more generalized approach, using continuous- 
valued longitudinal datasets, to make individual predictions of aging 
trajectories and to infer a robust network of interactions on the level of 
blood biomarkers and functional disabilities. 

3. Computational models 

All but the simplest models need to be implemented 

computationally. Computational models allow us to simulate and 
explore the quantitative consequences of various hypotheses. That is, 
since computational models require well-defined algorithms, they force 
us to make our assumptions explicitly. By varying those assumptions we 
can explore their consequences. This can clarify and illuminate possible 
mechanisms of aging. 

Computational dynamical models can generate large synthetic pop
ulations of individuals with complete health trajectories and mortality. 
Such “perfect” data facilitates the systematic development of data 
analysis tools, including determining their statistical power for finite 
populations with missing data. More fundamentally, computational 
models also allow for a close examination of mechanisms at the popu
lation level: how does changing an assumption or a model parameter 
change the resulting health and mortality statistics of the population? 
The mechanisms behind the observed statistics of aging populations is a 
fundamental question of aging that can be answered, at least within the 
context of these model populations. 

The other side of the coin is that a significant disadvantage of 
modelling is that every assumption needs to be explicitly built into the 
mathematical framework of the model, and every parameter needs to be 
determined. This is in contrast to observational studies of human or 
organismal populations, in which the assumptions and effective pa
rameters are all implicitly included by biology. As a result, while natural 
observation naturally includes everything (including the “kitchen 
sink”), a modelling approach typically only builds a minimal framework 
to address the mechanisms under consideration. Identifying an appro
priate minimal framework, as well as specific mechanisms to consider, 
can benefit from qualitative approaches such as group model building 
(Uleman et al., 2020). Such approaches can help focus modelling efforts 
towards specific achievable goals, and will be particularly useful where 
effects across multiple scales are modelled (see Kenzie et al., 2017) or 
more generally when faced with limited data. 

The constructive flavour of modelling lends itself to inter-organismal 
comparisons, since we can ask whether parameter tuning alone can 
explain differences between organisms or whether the structure of the 
aging model needs also to be changed. Similar comparisons can be made 
between any distinct subpopulations of any one organism, including 
medically treated vs. untreated populations or genetically distinct 
populations. 

Structural changes in models should not be needed to accommodate 
small differences between populations. Conversely, structural 

Fig. 2. Weighted and directed links (arrows) between nodes (circles) in a 
weighted network model (WNM) of aging. Shown are 10 nodes, each of which 
represents specific observed binary health variables from cross-sectional 
studies. Only the more significant links are shown, with weights represented 
by the line thickness and arrow size. This model, with stochastic damage rates 
that can be implemented computationally (Farrell et al., 2020), can generate 
large synthetic populations that reflect observed high-dimensional health-states 
and mortality over the populations used to fit the model. See Figs. 3 and 4 
below. Note that the full model only has 10 nodes, representing just the 
observed health-states. 

Fig. 3. Simulated joint distributions of FI at 
death and death age from the network model 
described in Farrell et al. (2020), and illustrated 
in Fig. 2, given four individuals with the indi
cated initial baseline deficits (filled red points 
indicate their baseline age and FI). This dem
onstrates the capability of simulating pop
ulations of synthetic individuals, starting from 
different baseline conditions. The two columns 
show baseline ages of 65 (A and C) and 85 (B 
and D), the rows show different baseline FIs of 
0.1 (A and B) and 0.3 (C and D), for an FI with 
10 deficits.   

S. Farrell et al.                                                                                                                                                                                                                                  
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differences between models will lead to distinctive effects that can be 
observed and therefore tested in observations of natural populations. 
However, testability will be challenging for mechanisms that are not 
already well characterized. For example, we expect that the effects of 
genetically heterogeneous human populations will eventually be 
important to characterize and include in models, but it will be hard to 
separate those effects from the intrinsic variability of the aging process. 
Nevertheless, a successful modelling framework should allow us to 
identify the statistical signatures of proposed mechanisms – which will 
facilitate subsequent testing. 

To paraphrase Box (1976), all models are at least partially wrong but 
some can nevertheless be useful. However, rather than just trying to be 
mostly right or fairly useful, models should be improvable. This requires 
cycles of testing, development, and application to continually confront 
models with observable data. The benefit of this approach is that we can 
continually adjust our implicit or explicit assumptions to better and 
more usefully reflect emerging datasets. 

3.1. Generalizability 

Given the complexity of any organism, together with the complexity 
of the aging process, we can anticipate an enormous number of pa
rameters required to tune complex models to fit a population. This 
tuning (also variously called fitting, learning, calibration, parameteri
zation, or regression) is necessary if we want to do more than explore the 
qualitative consequences of a small set of model assumptions. Fitting the 
model to the data is necessary to make predictions for individuals, to 
compare populations, and to generate realistic synthetic populations. 

We can distinguish between effective and fundamental parameters. 
Fundamental parameters are model independent, can be measured or 
derived with a variety of techniques, and are unchanged in different 
contexts. Effective parameters (like effective theories (Transtrum et al., 
2015)), on the other hand, cannot be precisely replicated in different 
contexts and cannot be derived from any fundamental assumptions. We 
expect that almost all parameters of models of aging will be effective 
parameters, i.e. they will be at least somewhat dependent on the choice 
of model. Nevertheless, effective parameters should not be treated as 
arbitrary tuning-knobs of a model. More useful parameters will change 
less between studies, will be more interpretable, and will lead to better 
model predictions. Determining good model structure that facilitates 
useful parameterizations is an iterative process that is one goal of 

successful modelling. 
The technical details of fitting a model are well understood. Simple 

models can be hand-tuned to agree with population-level measures; 
however such simple models will not provide the best individual-level 
predictions. More sophisticated models can be fit with maximum like
lihood, or other objective or “loss” functions, to obtain a model that best 
fits the available data. Bayesian approaches are also possible, where 
posterior distributions of parameters are obtained, rather than single 
point estimates. 

An ideal data set would have a large homogeneous population, with 
complete, detailed health information that is longitudinally sampled 
frequently over individual lifetimes with uncensored mortality data. A 
computational model should be able to capture the important behavior 
exhibited in such data, so that it can then be used for individual pre
dictions. Better computational models would provide better predictions. 
Are there other ways of distinguishing between such models? After all, 
even the best human data sets have small heterogeneous populations 
compared to national or global scales, with significant amounts of 
missing and censored data, and with irregular and infrequent longitu
dinal sampling with respect to the daily or weekly variability of our 
individual health status. 

The answer hinges on how generalizable the model is to different 
data sets. If the model fit to one dataset poorly generalizes to other 
datasets – then the model has “failed”. It has failed in a useful way (Box, 
1976) if we can expand the model in an interpretable way to accom
modate both datasets. It has failed in a disappointing way if we cannot, 
and if we cannot understand why not. 

Ideally, any successful model would be tested with as many different 
datasets as possible. This builds confidence in the accuracy of the model, 
but conversely can uncover weaknesses in the model – suggesting areas 
to improve. A significant limiting factor currently is the lack of multiple 
large, publically available, longitudinal datasets with similar health 
observations. 

It will be exciting to ask whether we can also generalize models to 
different applications. For example, consider interventions in the health 
of individual organisms due to drugs, surgery, treatment, lifestyle, ac
cidents, illness, or (in the case of model organisms) experimental 
manipulation. Can a model predict the outcomes of such interventions? 
Better predictions could be used to both improve individual treatment 
plans and manage the health-care of increasingly greying populations 
(Harper, 2014). 

Fig. 4. Intervals of sampled stochastic FI tra
jectories vs. age from the network model 
described in Farrell et al. (2020) and illustrated 
in Fig. 2, given given four individuals with the 
indicated initial baseline deficits. Trajectories 
are shown for samples with the median pre
dicted death age, for the same individuals 
shown in Fig. 3. The purple shading indicates 
the percent of trajectories contained within the 
boundary of each region, similar to a confidence 
interval. The red circles indicates the baseline 
age and FI from which the simulation is started. 
The two columns show baseline ages of 65 (A 
and C) and 85 (B and D), the rows show 
different baseline FIs of 0.1 (A and B) and 0.3 (C 
and D), for a FI with 10 deficits.   

S. Farrell et al.                                                                                                                                                                                                                                  
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Nevertheless, we might expect that any predictive model that is 
optimally tuned to predicting “natural” mortality or health outcomes 
will not be easily generalized to predict the outcomes of specific in
terventions. While part of this limitation naturally arises from the data 
used to train the model, some of this limitation will also come from the 
model structure itself, since computational models will not be able to 
accurately capture effects that are not allowed for in the model struc
ture. Since the model structure itself may limit generalizability, some 
model structures (‘types of models’) will be better than others for this 
purpose. 

3.2. Underdetermined parameters, overfitting, and bias 

Any computational model of aging will also be at risk of under
determined parameters, overfitting, and bias from the data sets used in 
training. These are generic problems of complex models. 

Underdetermined parameters are parameters of the model that are 
not well constrained by the available data, but are nevertheless impor
tant for model functioning. A loose analogy is that while a hand may be 
needed for handwriting, which hand is much less constrained. Given 
limited data, strong correlations often exist between parameters that 
each can range widely in magnitude – this is the concept of sloppiness 
(Gutenkunst et al., 2007; Transtrum et al., 2015). As a result, when 
considered individually these poorly constrained or “sloppy” parameters 
have large uncertainties – even when the model can still make robust 
predictions. 

To resolve this problem, we can focus on the predictions of complex 
models taking into account the uncertainties in underdetermined pa
rameters, rather than the values of specific underdetermined parameters 
themselves (Gutenkunst et al., 2007). However, if direct interpretation 
of parameters is desired, determining specific parameter values can 
involve acquiring additional measurements, adding assumptions to the 
model, or otherwise improving model identifiability (Chis et al., 2016). 
Large clean datasets generated by computational models can be used to 
determine the types of observational data that would be needed to 
determine desired parameters. 

Overfitting is another generic problem with complex models with 
many parameters. Here, parameter values are fine-tuned to extract small 
improvements in fitting to the training data at the expense of good 
performance with new data. Overfitting is assessed by using dedicated 
training data and separate but comparable test data to assess model 
performance. Since fitting typically occurs through an iterative 
computational algorithm, overfitting can be minimized by simply 
stopping the fitting process when model performance on a held-out 
portion of the training data (the validation or development data) be
gins to decline. 

When test data is not comparable to training data then poor model 
performance can reflect poor generalizability due to limitations of the 
training data rather than due to overfitting. Some problem of general
izability arises in most training datasets, because they have biases in 
demographics (age distribution, sex, race), health-state of enrolled 
participants, medical treatment during the course of the study, or in any 
other possible category within the dataset. 

Modelling bias can also arise due to the structure of model not being 
able to account for all aspects of the data. For example, survivor bias 
(Murphy et al., 2011) can be troublesome for models that do not capture 
mortality properly. When measured covariates have associations with 
mortality, the drop-out of individuals during the study due to mortality 
can bias the results. Models must account for survival effects, for 
example with joint longitudinal-survival models (Hickey et al., 2016) 
that model health and survival together – otherwise modelling efforts 
can erroneously try to accommodate survival effects within the disease 
progression itself. 

3.3. Specific computational approaches 

There are many possible approaches towards computational 
modelling. The most productive approaches will be determined by a 
combination of the background of the researcher, the problem at hand, 
and the data available. Agent-based modelling is one popular approach 
to managing multiple spatial and temporal scales in ecological systems 
(Grimm, 2005) or in socially interacting populations (Bonabeau, 2002). 
However, given the large heterogeneous data-sets and complexity 
inherent in aging organisms, we feel that Machine learning (ML) tech
niques are particularly promising for aging research. 

4. Machine learning 

Machine learning (ML) is a loosely-defined term for a collection of 
data-based models that are typically fit or “trained” with large high- 
dimensional data sets. Typical goals of ML approaches are classifica
tion (the most common application (Domingos, 2012), though not our 
focus here), regression, and generating synthetic samples with the same 
properties as the observed data. 

Neural networks are often used in more sophisticated ML models 
(Goodfellow et al., 2016), as in deep learning (LeCun et al., 2015). 
Neural networks consist of layers of artificial neurons that each have 
many linearly combined input connections from previous layers, and 
many output connections to subsequent layers. All connection parame
ters for every neuron are trainable. Non-linear transformations in each 
neuron allow multiple layers (i.e. “deep” networks) to represent func
tions or relationships of arbitrary complexity (Leshno et al., 1993; Raghu 
et al., 2017). 

Powerful neural networks have enormous numbers of parameters 
that must be trained for the network to represent a desired function. 
Neural networks are designed so that this training is computationally 
efficient. Overfitting can be a concern with so many parameters, and it is 
managed by careful use of regularization, which imposes restrictions on 
the parameters learned by the model. Test data, not used in training, is 
an important part of evaluating model performance and behavior. 

Any unknown component of a model of aging can therefore be 
learned with a neural network, given sufficient training data. However, 
the researcher still needs to develop the overall structure of the model (i. 
e. how all the pieces glue together), choose appropriate neural network 
architectures, and manage the algorithms (and their “hyper”-parame
ters) that train the model while avoiding overfitting. 

ML is rapidly developing, and new ML tools are easily learned and 
used after some expertise is gained. It is more challenging to achieve the 
goals of generalizability, where models perform well on data that is 
unlike the training set, and interpretability, where the mechanisms of 
the model can be understood and related to mechanisms in other model 
systems. Both of these goals are difficult because the flexibility of 
complex models required to achieve generalizability limits interpret
ability. Large data sets can help with generalizability by allowing the use 
of more complex models, but interpretability is an ongoing challenge 
(Rudin, 2019). 

One strategy towards improving interpretability with ML is to 
develop models where knowledge of specific aging mechanisms are built 
into the model, while unknown components are learned with deep 
neural networks (using, e.g., differential equations to capture their 
behavior (Rackauckas et al., 2020)). With this approach, encoding the 
knowledge we already have about the aging system effectively con
strains the more general ML approach. This maintains the flexibility that 
deep neural networks have to offer, allows the model to be trained with 
less data than a more general model, and adds interpretability to the 
model. 

Nevertheless, caution will be needed in accepting novel mechanisms 
just because they lead to better predictions or model performance. While 
we do expect that correct mechanisms will lead to better model behavior 
and generalizability, we also expect that powerful ML approaches may 

S. Farrell et al.                                                                                                                                                                                                                                  



Mechanisms of Ageing and Development 193 (2021) 111403

7

be able to perform reasonably well in spite of incorrect mechanisms. A 
critical approach will be called for, using data and predictions that can 
discriminate between putative mechanisms. 

4.1. ML approaches in ageing research 

Several ML models have been developed specifically for aging. 
Pierson et al. (2019) developed a model that infers rates of aging for 
individuals that correlate with risk factors of aging, and that can be used 
to forecast future health. Avchaciov et al. (2020) developed a model that 
describes the aging of mice with an inferred dynamical frailty index, 
which correlates with both mortality and treatment effects. 

Similarly, machine learning has already had success in the estima
tion of biological age (Hannum et al., 2013; Horvath, 2013; Levine et al., 
2018; Lu et al., 2019). With these models, many biological variables (e. 
g., DNA methylation levels) are reduced to a single estimate of biological 
age, which is found to be predictive of other health outcomes and 
mortality. The models used here are generally regularized linear models, 
due to the huge number of variables compared to the limited amount of 
data. As more data becomes available, more sophisticated techniques 
can be used for assessing biological age (Putin et al., 2016; Pyrkov et al., 
2018; Schultz et al., 2019; Zhavoronkov and Mamoshina, 2019). 

Nevertheless, models of biological age are not dynamical models – 
they cannot simulate the future health trajectories of individuals, but 
only summarize and interpret the current health state. Furthermore, 
since reducing health to a single variable cannot capture multi- 
dimensional aspects of health, we believe that developing dynamical 
models that address longitudinal trajectories across multiple health di
mensions is a promising direction for machine learning in aging 
research. 

To forecast multi-dimensional health trajectories, existing machine 
learning approaches for modelling disease progression could be adapted 
to model aging progression. While many of these do not model mortality 
(Schulam and Suchi, 2015; Alaa and van der Schaar, 2018; Fisher et al., 
2019; Walsh et al., 2020), joint longitudinal-survival models could be 
adapted for this purpose (Lim and van der Schaar, 2018). A stochastic 
process model of aging has already been developed that models both 
health trajectories and mortality (Yashin et al., 2007, 2012; Arbeev 
et al., 2011, 2014), but it has not yet been applied to high-dimensional 
datasets. 

Given efficient algorithms for parameter determination (learning) 
together with flexible functional dependence (deep learning), we see 
great promise for ML approaches in the study of aging. Natural appli
cations are filling in missing data, identifying natural subpopulations or 
categories of aging organisms, incorporating multiple heterogeneous 
data sources, and modelling the aging process itself as a stochastic 
dynamical process. 

In Table 2 we have listed some current work in the machine learning 
literature that we believe could be useful in applying machine learning 
to aging. While additional development of any existing techniques 
would be required for any specific problem, these approaches (and the 

references they cite) capture many useful ideas. 

5. The challenges and promise of aging models 

In the introduction, we listed four challenges of studying aging: how 
to better observe health in aging populations, how to better understand 
the mechanisms behind what we observe, how to better predict indi
vidual health, and how to better intervene in the aging process. We then 
highlighted particular challenges and promise of generalized computa
tional models of aging in Table 1. Here, we provide more detail about 
the near-term challenges facing aging models – together with some of 
the opportunities that make facing these challenges worthwhile. 

5.1. E-health, self-reported, and longitudinal data 

Focused population surveys are expensive. Large scale studies such 
as ELSA (Steptoe et al., 2014) or NHANES (Centers for Disease Control 
and Prevention National Center for Health Statistics, 2014) are limited 
to populations on the order of 10000 individuals. Even the impressive 
UK Biobank has less than one million individuals (Sudlow et al., 2015). 
In contrast, the use of electronic health records (EHR) (Clegg et al., 
2016) could eventually reach large fractions of national populations 
with lifetime longitudinal data. EHRs are therefore an attractive source 
of data on the aging process. Similarly, individual health tracking 
through e.g., smart watches, or through self-reporting, could also reach 
large fractions of national populations. These developments will provide 
natural datasets with large populations that have lifetime longitudinal 
information. 

Significant biases are found in EHR data (Vassy et al., 2018) and also 
in self-reported health data (Zajacova and Dowd, 2011; Gunasekara 
et al., 2012). It will be difficult to explicitly account for these biases in 
order to reconcile EHR and self-reported data with corresponding na
tional prospective studies from similar populations. Nevertheless, an 
immediate opportunity is to use this data for personalized health models 
and predictions. 

More generally, large-scale longitudinal data collection provides an 
opportunity for aging models to employ these data to better capture the 
aging process of individuals, including individual variability. Compu
tational models of aging are well placed to make use of longitudinal data 
given the vast amount of data potentially available. Natural questions 
include how much is gained by more frequent measurements, how to 
best handle variables observed at irregular time intervals and with 
varying degrees of missing observations, how to model mixtures of 
qualitative and quantitative measurements or of self-reported and mo
lecular measures, and how to include individual health histories in in
dividual health predictions. 

5.2. Defining and comparing populations 

Some über-model of aging might explicitly capture each aspect of 
individual variability, including a life-history of diet, lifestyle, injury, 
medication, and health-care. More realistically, most variability will 
first need to be captured implicitly within aging models through 
parameterization or model structure – tuned for different natural sub
populations. Race (Williams, 2005), sex (Gordon and Hubbard, 2018; 
Gordon et al., 2017), socioeconomic position (Knesebeck Ovd et al., 
2007), social vulnerability (Wallace et al., 2015), access to health-care 
(Santana, 2000) or pensions (Aguila et al., 2018), rural/urban (Yu 
et al., 2012), and nationality, are all categories that have been studied by 
aging researchers. Chronic disease, genetic disorders, and certain pat
terns of multimorbidity or polypharmacy could also serve as natural 
categories. A challenge will be to reduce the significance of these natural 
categories for individuals by making the more of the implicit differences 
between the populations explicit – allowing for better individualized 
study of aging and treatment. To be able to achieve this requires good 
data coverage across many subpopulations, but also good models that 

Table 2 
Promising approaches for the modelling of aging.  

Longitudinal data  

Transitions between disease states at 
discrete times 

Liu et al. (2015), Alaa and van der 
Schaar (2018) 
Fisher et al. (2019), Walsh et al. 
(2020) 

Irregularly timed observations 
Rubanova et al. (2019), Schulam and 
Suchi (2015) 

Understanding covariate effects and 
interactions 

Timonen et al. (2020) 

Interpretable latent variables Avchaciov et al. (2020), Pierson et al. 
(2019) 

Joint Models (survival) Lim and van der Schaar (2018)  

S. Farrell et al.                                                                                                                                                                                                                                  



Mechanisms of Ageing and Development 193 (2021) 111403

8

can characterize and model the differences. 
Models of individual health with explicit context could then be used 

to generate synthetic populations that match measured or projected 
demographic information. This would be particularly useful for detailed 
projections of the effects of aging in population health. 

5.3. Multiple scales and subsystems 

Different physiological scales present exciting opportunities in aging 
research. For example, molecular data is appealing because it can be 
high throughput and low-bias. Nevertheless, outcomes at higher (func
tional) scales are typically of greater individual interest. One challenge 
is to identify interactions between scales, from molecular to behavioral, 
and to incorporate them in aging models (Ferrucci et al., 2018; Mitnitski 
and Rockwood, 2019; Kuo et al., 2020). Reliably bridging the scales, 
particular in light of patchwork individual data (over scale, over time, 
and over individual measures), is an important challenge. Understand
ing how different scales work is the essence of understanding the aging 
process. How does damage propagate from the molecular to activities of 
daily living? Conversely, how do interventions of lifestyle or injuries 
propagate towards the molecular? 

Diseases (such as Alzheimer’s (Fisher et al., 2019)), tissues (such as 
the brain (Daunizeau et al., 2011)), or biological subfields (such as 
systems biology (Dada and Mendes, 2011)) each have distinct data-sets 
and modelling approaches. Particular aspects of the aging process, such 
as cellular senescence (Karin et al., 2019), can be similarly detailed. We 
see two promising ways to combine specialized approaches with more 
generalized models of organismal aging. The first is to identify key 
summary measures from detailed models, and to train generalized 
models with accordingly pre-processed data. The second is to include 
generalized models as background aging processes within the more 
specialized models. Both should be explored, so that aging processes are 
more routinely combined with emerging biological, physiological, and 
medical models. 

5.4. Predictions, treatment, and interventions 

Although individual predictions of health trajectories and mortality 
are natural goals for computational models of aging, a challenge is how 
to evaluate and judge the quality of the predictions, given the variety of 
different studies and possible outcomes. Evaluation of predictive quality 
is straight-forward retrospectively within the same dataset, by using 
separate training and test populations with either cross-sectional or 
longitudinal data with linked mortality. The determination of what 
quality of predictions are possible with what sort of data for individuals 
of a given age and health status will be important questions to answer. 

Being able to predict the results of medical interventions (including 
medication), of illness or injury, or of life-style interventions such as 
exercise for aging individuals would be game-changing since it could be 
used to improve personalized treatment. Most individuals experience 
many such interventions over their lifetime, so these are implicitly and 
approximately included in models of national aging populations. 
Indeed, we assume that many such interventions are the origin of most 
national differences or differences within a national population over 
history. 

A grand challenge will be to make many of these interventions 
explicit, particularly within models of individual health during aging. If 
successful, such explicit models will allow better individual prediction, 
better identification of intrinsic variability, and the ability to tailor or 
individualize interventions to better reflect individual priorities. To do 
this well we may need to include earlier data across individual life 
courses for large populations, including electronic health records and 
other longitudinal data. 

Current research is often focused on the “diseases of aging”, such as 
Alzheimer’s disease, cancer, and cardiovascular disease. While we are 
optimistic that complex computational models of aging can be applied to 

these conditions, doing so will require large-scale data for long-term 
outcomes of these specific diseases and possible interventions – which 
may be difficult to obtain. 

In the short term, there is a use for dynamical models in clinical trials 
since models can be used to generate large synthetic control populations 
(Fisher et al., 2019; Walsh et al., 2020). Models could synthetically 
create control arms that are better matched in age, sex, and original 
health status with respect to the treatment arm. Computational models 
may also be useful to explore and understand the effects of comorbidities 
and their treatments. 

6. Looking ahead 

Early modelling has been restricted to simple theoretical or statistical 
explorations of the aging process, through damage accumulation or 
regression models. Though this approach has limited ability to predict 
individual health, it has advanced our conceptual understanding of how 
aging could work. 

More recently, various models have started to address observational 
data that includes the detailed health and mortality of large numbers of 
individuals, which we call “networked” models since they capture in
teractions between different aspects of individual health. Our work in 
this area has included explicit complex networks, but the networks can 
also be theoretical (Yashin et al., 2012; Arbeev et al., 2016), correla
tional (Hidalgo et al., 2009; Roque et al., 2011; García-Peña et al., 
2019), or implicit in the approach. Few models have addressed both 
individual health and mortality, though these are now starting to emerge 
(Farrell et al., 2020). 

Once multiple models with both health and mortality are developed, 
then the natural scientific selection of “better” models can proceed by 
confronting their simulated results with observed data. Natural mea
sures of goodness of models include predictive quality, generalizability 
across different population demographics (including age and health, but 
also sex and chronic conditions), interpretability, and the ability to 
effectively and efficiently train with big heterogeneous data sets. The 
ability to efficiently and effectively predict future individual health 
trajectories will be revolutionary, particularly if models include the ef
fects of injury and disease, or the benefit of various medical and phar
macological interventions. 

While observational data sets will only increase both in the number 
of individuals, in the number of physiological aspects of health that are 
reported, and in the frequency of longitudinal measurements, the 
amount of easy-available data available to train, test, and compare 
modelling approaches is still limited. Public “challenge” datasets could 
provide realistically imperfect but extensive longitudinal health data 
together with mortality statistics to allow for comparison between and 
improvement of modelling approaches. Providing raw data together 
with cleaned data is important, since improvements in data-cleaning 
(Van den Broeck et al., 2005) can also lead to model improvement – 
and computational pipelines of data-cleaning will be increasingly 
necessary for large population studies. 

We will never achieve a “death-clock” where we can precisely pre
dict an individual’s death, nor a health-calendar of precisely how their 
health will change as they age. Nevertheless, we may be able to classify 
and identify useful aging phenotypes, to obtain good predictions of in
dividual health-trajectories and mortality, and to identify the most 
useful health interventions for a given individual. Because computa
tional models can capture the effects of many interacting aspects of 
human physiology, they are promising tools to use to help to address 
these questions. 

How computational models can and will be used will depend on how 
successful they become. We believe that they will lead to a deeper un
derstanding of how aging works, both for human aging and for model 
organisms. By incorporating many different mechanistic effects within 
and between different organismal scales, computational modelling 
could reach towards an overarching, contingent, and quantitative theory 
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of aging. 
More prosaically, computational models could help to control for the 

effects of different populations, or to improve national or regional 
comparisons of the determinants of health. We also expect that models 
will be able to capture the effects of various health interventions at the 
individual level. If models become sufficiently good, they would be able 
to help individuals to develop and adapt their personal health plans. We 
are hopeful. 

Acknowledgements 

ADR thanks the Natural Sciences and Engineering Research Council 
(NSERC)for an operating Grant (RGPIN 2019-05888). KR has opera
tional funding from the Canadian Institutes of Health Research (PJT- 
156114) and personal support from the Dalhousie Medical Research 
Foundation as the Kathryn Allen Weldon Professor of Alzheimer 
Research. 

References 
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