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Cab-0-Sil powder is a cluster aggregate of silica spheres formed from silica smoke. The fractal dimension of clusters of 
14 nm diameter spheres is determined to be d = 1.7 1 * 0.05, in good agreement with that calculated for the cluster-aggregate 
model, d = 1.75. Measurements of Young's modulus ( Y )  of packed 7 nm Cab-0-Sil powder, with an occupied volume fraction 
in the range 0.035 < f < 0.3, arc well described by the percolation threshold f, = 0.017 & 0.002 and an elasticity exponent 
T = 2.9 * 0.2.  The measured exponent is larger than the calculated scalar Born (balls and springs) result, 7 = 2.0,  but smaller 
than the more realistic bond-bending result, T > 3.55. The measured result is attributed to bond bending within a complex 
percolation structure. 

La poudre Cab-0-Sil est un agrdgat d'amas de spheres de siliccformC B partir de fumC de silice. La dimension fractale d'amas 
de spheres de 14 nm de diamktre a CtC dCterminCc comme Ctant d = 1,71 & 0,05, en bon accord avec la valeur calculCe pour 
le modkle d'aggrCgat d'amas, d = 1,75. Des mesures du module de Young ( Y )  de poudre Cab-0-Sil de 7 nm compacte sont 
bien dCcrites par le seuil de percolation f, = 0,017 -f 0,002 et un exposant d'ClasticitiC r = 2,9 & 0,2. La valeur mesurCe 
de I'exposant est plus grande que le rCsultat Born scalaire (ballcs et ressorts) calculC, T = 2,0,  mais plus petite que le resultat 
plus rCaliste de flexion de liaison, r > 3,55. Le rCsultat mesurC est attribut a la flexion des liaisons a I'intCrieur d'une structure 
de percolation complexe. 

[Traduit par la revue] 
Can. J. Phys. 65, 767 (1987) 

1. Introduction 
Aggregated small particles have been used to study percola- 

tion (1) and fractal structures (2). The aggregation can be 
formed from colloidal deposition (3), supercritical drying of 
colloids (aerogels) (4), condensed smoke ( 3 ,  composite for- 
mation (6), or sintering of metal powder (7). Experimental 
techniques have included analysis of electron microscope pic- 
tures (5, 8), small-angle scattering of X-rays (3) and neutrons 
(9), light scattering (3), measurements of electrical (6) and 
thermal conductivity (4, lo), heat capacity (lo),  ultrasonic 
velocity and attenuation (4, 1 l), current noise (12), dielectric 
constant (6), optical properties (6), pore-size distribution (4), 
and time-resolved fluorescence decay (13). 

These experiments have shown percolation behaviour with 
percolation thresholds in the range 0.01 < fc < 0.26, where fc 

is the threshold value of the occupied volume fraction, f, and 
fractal dimensionalities for the aggregates in the range 1.55 < 
d < 2.6. These are to be compared with fc - 0.16 for lattice- 
based site percolation models (1) and fractal dimensionalities of 
1.75 and 2.5 for cluster aggregation (14) and diffusion-limited 
aggregation respectively (15). 

One interesting question, concerning the universality of elas- 
ticity and conductivity of a percolation system above threshold 
(16), was addressed by measuring the two properties for a 
series of packed and sintered submicrometre silver-powder 
beams (7). The result, in agreement with an earlier experiment 
on a two-dimentional (2D) system (17), was that the elasticity 
exponent was significantly larger than the conductivity ex- 
ponent. In detail, if the elasticity (Young's modulus) and con- 
ductivity are expressed as, 

[ l l  Y ~ ( f - f ~ ) ' ,  u c c ( f - f c ) '  

then it was found that f c  = 0.06, 7 = 3.8 + 0.5, and t = 2.15 
0.25. Subsequent experiments on copper- plastic and 

carbon-Teflon composites found t = 2.15 2 0.25 and 
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1.85 +- 0.25 (19) respectively. These conductivity exponents 
overlapped the best theoretical estimate for the exponent, 
t = 2.0 (1). The elasticity exponent is in agreement with the 
result predicted by the bond-bending model of elasticity of the 
three-dimensional (3D) lattice-based bond percolation model 
(20); that is, the elasticity is determined not by the stretching of 
the bonds but rather by the change of angle between neigh- 
bouring bonds at a lattice site. 

There are good reasons to study the elasticity and other 
properties of insulating aggregates near percolation. In particu- 
lar, there is interest in the dynamical modes of an aggregate and 
their relation to the structure and elasticity. Specific-heat and 
thermal-conductivity measurements can probe these modes 
but only in an insulating aggregate. In a metallic system, the 
electrons determine these properties. Furthermore, far above 
the percolation threshold, Pohl and Tait have measured inter- 
esting specific-heat and thermal-conductivity anomalies in 
compressed silica and alumina powder (10). Therefore, this 
study is aimed at investigating the structure and elasticity of 
aggregated silica powder. The material chosen is Cab-0-Si13 
because of its properties and availability. After completion of 
this work, a report on similar measurements with silica aerogel 
was published (21). 

2. Cab-0-Sil powder 
Cab-0-Sil is formed by the hydrolysis of Sic& in a 

hydrogen-oxygen flame. The molten spheres of silica that are 
formed collide and aggregate. The resultant material has a 
light, fluffy form with an occupied volume fraction, as re- 
ceived, of f = 0.02 or a density of -40 g.L-'. The size of the 
spheres can be varied by the production process, from 7 nm to 
24 nm. Figure 1 is a scanning electron micrograph of a few 
Cab-0-Sil clusters showing the aggregated-spheres struc- 
ture. Several years ago, Forrest and Witten (5) analyzed an 
electron micrograph of a large Cab-0-Sil cluster and deter- 
mined a fractal dimension of 1.55 < d < 1.85. This measured 

'Obtained from Cabot Corporation, P.O. Box 188, Tuscola, IL 
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n ~ .  1. Electron micrograph of gold-shadowed Cab-0-Sil powder 
showing the sphericity of the individual particles that have fused into 
the aggregates (from CAB-0-SIL@ properties and functions, CAB-O- 
SIL Division, Cabot Corporation). 

value-is consistent with the theoretical cluster-aggregation re- 
sult, d = 1.75 (15). 

3. Experimental method and results 
For this study, we reinvestigated, with a different method, 

the fractal structure of Cab-0-Sil clusters and then measured 
the elasticity of beams of packed Cab-0-Sil powder. 

3.1 Fractal dimension 
The determination of the fractal nature of Cab-0-Sil clusters 

was made relatively simple by the inclusion of an electron 
micrograph of about 30 clusters in the brochure accompanying 
the powder, and by the publication of a paper describing a 
method for determining fractal dimensionality of 3D clusters 
from 2D images (8). The method is based upon a theorem, due 
to Mandelbrot (2), that the fractal dimension of a 3D cluster 
remains unchanged upon-projection onto a 24p lane  provided 
d 5 2. Therefore, M a Ld is replaced by A a L d ,  where L is the 
linear dimension of the cluster, M is the mass and A is the 
projected area. The linear dimension of the cluster was taken 
as the geometric mean of the largest linear dimension and 
the perpendicular linear dimension. The projected area was 
measured with a mechanical planimeter. Figure 2 is the elec- 
tron micrograph of the -30 clusters of 14 nm silica spheres. 
Figure 3 is a graph of projected area versus mean linear dimen- 
sion for all of the clusters shown in Fig. 2. Very good scaling 
behaviour was obtained for almost two orders of magnitude 

n ~ .  2. Electron micrograph of the M-5 Cab-0-Sil(14 nm diameter) 
aggregates that were used for the analysis of the fractal dimensionality 
(from CAB-0-SIL@ properties and functions, CAB-0-SIL Division, 
Cabot Corporation). 

variation in the linear dimension. A least squares fit to the data 
gave d = 1.71 -+ 0.05, in good agreement with the cluster- 
aggregation model (15) and with the earlier Forrest and Witten 
result. However, the result differs from that found for silica 
aerogel, where fractal structure over only a decade in linear 
dimension (- 1 - 10 nm) and d - 2 were observed (22). Differ- 
ences in growth behaviour could account for the different re- 
sults (23). 

3.2. Young's modulus 
Young's modulus of elasticity was measured by a beam- 

bending technique (7,24).  The Cab-0-Sil beams, 35 mm long 
X 5 mm wide, were formed by pressing the Cab-0-Sil powder 
into demountable molds. Only one pressing per beam was used 
to avoid any layering effect or variable density across the height 
of the beam. Beams in the range 0.035 < f < 0.3 were pro- 
duced. The beam thickness varied from 2 mm for large values 
off  to 5 mm for small values off .  No sintering was required 
to achieve well-formed beams, although it was necessary to 
disassemble the mold from around the beam to prevent break- 
age. In fact, sintering at 900°C had almost no effect on the 
strength of the beams, except for cracking if the temperature 
was increased too quickly. 

The beams were supported a few millimetres from each end 
and loaded in the centre by adding weights with a small manip- 
ulator. Plots of deformation of the centre of the beam versus 
load for loading and unloading were made. It was necessary to 
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FIG. 3 .  Plot of area of a Cab-0-Sil aggregate as a function of the 
mean length of the aggregate for each of the aggregates shown in 
Fig. 2. The mean length ( L )  was defined as the geometric mean of the 
longest length and the length perpendicular to it. The best fit was given 
by A a Ld with d = 1.71 0.05.  

keep the load within the load limit, which corresponded to a 
deformation of about 10% of the beam height or a longitudinal 
strain of -1%. The slope of each plot was converted to 
Young's modulus (24). The uncertainty of each measurement 
of Young's modulus (-+lo%) reflected the scatter in the 
deformation-load plots and the difference in the slopes for 
loading and unloading. 

Young's modulus was fitted to the expression 

y = a(f - fc)' 

by least squares fitting of the equation 

In Y = l n a  + T ln(f - f,) 

for a series of trial values off,. Figure 4 shows the values of 
X 2  and T as a function of the trial value off,. The best fit was 
for f, = 0.017, and the x 2  value of 0.994 was close to the value 
of 1 expected for a good fit. The exponent T for this f, value was 
2.9. The assignment of uncertainty was not easy for this pro- 
cess, but we took f, = 0.017 + 0.002 and T = 2.9 + 0.2. 
Figure 5 is a log-log plot of Y as a function of (f - f,) with 
f, = 0.017, and the line through the data has a slope of 2.9. 

The large surface area and hydrophilic character of the sur- 
face cause moisture adsorption by Cab-0-Sil. For instance, at 
50% relative humidity, the equilibrium moisture pickup is 
about 8% by weight. Therefore, for each measurement of 
Young's modulus, the beam was made and measured on the 
same day and the relative humidity was recorded. There was no 
correlation of the deviations of the measured Young's modulus 

TRIAL THRESHOLD, f, 

FIG. 4. The result of fitting the measured Young's modulus to the 
equation log Y = constant + log( f - f,), where f, was a variable trial 
parameter. The upper curve shows the variation of T with the param- 
eter f,. The lower curve is the result of the X 2  test and shows a clear 
minimum (- 1 as expected) for f, = 0.017. 

from the fitted curve with the relative humidity. 
Cab-0-Sil starts to sinter at 800°C. Several samples were 

sintered at 900°C. This caused the beams to shrink about 2% in 
the linear dimension and to lose about 4% by weight, pre- 
sumably due to the loss of moisture. On average, Young's 
modulus increased by about lo%, while the exponent T re- 
mained unchanged. There was, however, significantly more 
scatter in the results. 

4. Discussion 
Figure 3 shows that the Cab-0-Sil clusters are fractal struc- 

tures with a density that decreases with increases in cluster size. 
The fractal dimension 2 = 1.71 + 0.05 is in good agreement 
with the theoretical value 2 = 1.75 for cluster aggregation. 
This is perhaps no surprise, because the clusters are formed by 
just such a cluster-aggregation process from the condensation 
of the fumed silica. However, the Cab-0-Sil beams are not 
fractal structures, because above the percolation threshold, the 
percolation clusters scale with the Euclidian dimension rather 
than a fractal dimension.' 

The value of the percolation threshold, f, = 0.017, of the 
Cab-0-Sil beams supports this. Lattice-based site percolation 
models give a percolation threshold value of occupied volume 
fraction of -0.16. We can consider the beams as being made 
of a random packing of Cab-0-Sil clusters. Then, the percola- 
tion threshold occurs when the cluster packing reaches -0.16 
by volume. However, because the occupied volume fraction of 

'See Chap. 3 of ref. 1 .  
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FIG. 5. A log-log plot of the measured Young's modulus as a 
function of (f - f,) with f, = 0.017. The solid line has a slope of 
T = 2.9 and correponds to the best fit illustrated in Fig. 4. 

each cluster is low, the threshold occurs when the Cab-0-Sil 
packing is much less than 0.16 by volume. The ratio of mea- 
sured to theoretical thresholds is a measure of the occupied 
volume fraction of the average Cab-0-Sil clusters, -0.1 in this 
case. The occupied volume fraction of a fractal structure varies 
with the size of the structure as 

where M, V, and L are the mass, total volume, and size of the 
structure, and Mo, Vo, and Lo are the mass, volume, and size 
of the individual particles making up the structure. In the 
present case, the occugied volume fraction of the Cab-0-Sil 
clusters is -0.1 and d = 1.7; therefore, (L/L0)-'.' - 0.1 or 
L - 6 Lo. For the 140 A particles used for the fractal analysis, 

L - lo-' pm and agrees very well with the median cluster size 
shown in Fig. 3. In this regard, the Cab-0-Sil beams are proba- 
bly similar to the silica aerogel (22) and colloidal silica (23), 
with fractal structure up to a length of - 10 particle diameters 
and Euclidian structure beyond that.5 The different fractal di- 
mensions merely reflect the different growth processes. 

This structure of the Cab-0-Sil and silica aerogel must be 
responsible for the elasticity exponent T = 2.9 + 0.2, which is 
significantly larger than the conductivity, or scalar Born elas- 
ticity model, exponent t = 2.0, but which is also significantly 
smaller than the minimum exponent T = 3.55 of the bond- 
bending elasticity model. Gronauer et al. (21) have measured 
Young's modulus for a series of silica-aerogel samples in the 
range 0.032 < f < 0.12. By forcing a fit to the Young's 
modulus of bulk silica, the best fit to the results corresponds to 
an elasticity exponent T = 3.7. However, if only the aerogel 
results are fitted, T = 2.9 gives a much better representation of 
the data.6 Recent theoretical work on the application of the 
bond-bending model of elasticity to continuum percolation sys- 
tems shows that the elasticity exponent should be significantly 
larger than for lattice-based percolation systems (27); it is, 
therefore, unlikely that the exponent 2.9 arises from continuum 
effects. One possible origin of the exponent is that within the 
"nodes, links, blobs" picture of percolation (28), with the 
nodes being occupied lattice sites, the links being connections 
between the nodes, and the blobs being regions encompassing 
multiple connectivity and dangling bonds, the nodes of the 
silica systems are fractal clusters rather than single particles. 

Another perhaps more likely possibility is that the attractive 
force between a significant number of neighbouring clusters is 
predominantly a central force; that is, some pairs of the clusters 
can freely rotate about their point of contact (29). This is unlike 
the case of the sintered metal ~owder.  where a definite bond 
between particles is formed b; surface diffusion during the 
sintering procedure. In such a case of a mixture of central 
forces and bond-bending forces, an elasticity exponent between 
the Born and bond-bending limits would not be unexpected. 

A final comment concerns the dynamics of Cab-0-Sil. 
Several years ago, a measurement of the specific heat of 
pressed 7 nm Cab-0-Sil (f - 0.5) (10) showed an anomalous 
specific heat that was linear in temperature and an order of 
magnitude larger than the well-known low-temperature linear 
specific-heat capacity of amorphous solids (30). Rutherford 
et al. (3 1) postulated localized vibrational modes for a packed 
powder, spread over a frequency range with a constant density 
of states, to explain millikelvin Kapitza resistance measure- 
ment. As evidence for these modes, they showed that the calcu- 
lated specific heat for the packed Cab-0-Sil powder had the 
same temperature dependence as the measured specific-heat 
anomaly and was within a factor of two in numerical agree- 
ment. Since that time, it has been found that packed powders 

'This does not mean that-the beams are homogeneous on a length 
scale larger than 10 particle diameters. Homogeneity sets in only 
beyond the correlation length 5, or the size of the largest pore. This 
length scales with occupied volume fraction as (f - f,)-" with v - 0.9 
(1, 25). 

61t is worth noting that the line shown in Fig. 5 extrapolates to 1 x 
10" N m-' at f = 1, which is considerably smaller than Young's 
modulus of bulk silica (7 x 10'' N-m-I)  (26). Similarly, the extrapo- 
lation of the sintered silver-powder modulus (7) to bulk silver gives a 
Young's modulus of 25% of the measured bulk-silver value. It is not 
known if these observations are significant, because the percolation 
models are applicable only close to the percolation threshold. 
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can be described by percolation theory, and theory has been 
extended to include dynamical effects. If the elasticity of the 
percolation system is described by the scalar Born (balls and 
springs) model, then the Alexander-Orbach conjecture (32) is 
that the density of vibrational modes varies as v1I3. On the other 
hand, if the elasticity is described by the more realistic bond- 
bending model, then the density of vibrational modes varies as 
v-'.' (33). The elasticity exponent T = 2.9 for Cab-0-Sil sug- 
gests some form of bond-bending elasticity and therefore the 
postulate of Rutherford et al. of a frequency-independent den- 
sity of modes has received a striking confirmation. 

5. Conclusions 
Cab-0-Sil is an aggregated form of small silica spheres. The 

individual clusters show fractal dimensionality over almost two 
orders of magnitude in linear dimension with d = 1.7 1 + 0.05. 
This is in good agreement with the cluster-aggregation growth 
model. Beams of pressed Cab-0-Sil powder behave according 
to percolation theory with a percolation-threshold occupied 
volume fraction f, = 0.017 ? 0.002 and an elasticity exponent 
T = 2.9 2 0.2. The exponent is larger than that calculated for 
the scalar Born model (T = 2.0) but is smaller than the lower 
limit of the bond-bending model (T = 3.55). The low percola- 
tion threshold is attributed to the fractal aggregate character of 
the powder. The similar low percolation threshold and elas- 
ticity behaviour for pressed Cab-0-Sil powder and silica aero- 
gel suggest that they have very similar form; fractal structure up 
to about 10 particle diameters, percolation structure up to the 
correlation length, and homogeneity beyond that. The correla- 
tion length is not yet known. 

Acknowledgements 
We wish to acknowledge many useful discussions with J. H. 

Page, experimental assistance and guidance from P. Zawadzki, 
the loan of a planimeter from V. A. Hughes, the gift of the 
Cab-0-Sil powder by Cabot Corporation, the award of Natural 
Sciences and Engineering Research Council of Canada 
(NSERC) summer undergraduate awards to two of us (J.F. and 
A.R.), and the award of a Killam Fellowship to the third 
(J.P.H.). This research has been supported by NSERC. 

1. D. STAUFFER. Introduction to percolation theory. Taylor and 
Francis Ltd., London, England. 1985. 

2. B. MANDELBROT. The fractal geometry of nature. Freeman, New 
York, NY. 1983; R. ORBACH. Science (Washington, D.C., 
1983), 231, 814 (1986). 

3. D. W. SHAEFER, J. E. MARTIN, P. WILTZINS, and D. S. CAN- 
NELL. Phys. Rev. Lett. 52, 2371 (1984). 

4. J. FRICKE (Editor). Aerogels. Springer-Verlag, Berlin, Federal 
Republic of Germany. 1986. 

5. S. R. FORREST and T. A. WIPEN, JR. J. Phys. A, 12, L109 
( 1979). 

6. J. C. GARLAND and D. B. TANNER (Editors). Electrical transport 
and optical properties of inhomogeneous media. American Insti- 

tute of Physics, New York, NY. 1978; D. L. JOHNSON and P. N. 
SEN (Editors). Physics and chemistry of porous media. American 
Institute of Physics, New York, NY. 1984. 

7. D. DEPTUCK, J. P. HARRISON, and P. ZAWADZKI. Phys. Rev. 
Lett. 54, 913 (1985). 

8. D. A. WEITZ and M.  OLIVIERA. Phys. Rev. Lett. 52, 1433 
(1984). 

9. S. K. SINHA, T. FRELTOFT, J. KJEMS, and F. W. POULSEN. Bull. 
Am. Phys. Soc. 29, 353 (1984). 

10. R. 0. POHL. In Amorphous solids. Edited by W. A. Phillips. 
Springer-Verlag, Berlin, Federal Republic of Germany. 1981. 
p. 27; R. H. TAIT. Ph.D. Thesis. Cornell University, Ithaca, NY 
1975. 

11. N. WARREN. J. Geophys. Res. 74, 713 (1969); M. C. MALIE- 
PAARD, J. H. PAGE, J. P. HARRISON, and R. J. STUBBS. Phys. 
Rev. B, 32, 6261 (1985). 

12. C. C. CHEN and Y. C. CHOU. Phys. Rev. Lett. 54,2529 (1985); 
D. A. RUDMAN, J. J. CALABRESE, and J. C. GARLAND. Phys. 
Rev. B, 33, 1456 (1986). 

13. U. EVEN, K. RADEMANN, J. JORTNER, N. MANOR, and R. REIS- 
FELD. Phys. Rev. Lett. 52, 2164 (1984). 

14. T. A. WIPEN and L. M. SANDERS. Phys Rev. Lett. 47, 1000 
(1981). 

15. P. MEAKIN. Phys Rev. Lett. 51, 11 19 (1983). 
16. P. G. DE GENNES. J: Phys. Lett. 37, L1 (1976). 
17. L. BENGUIGUI. Phys. Rev. Lett. 53, 2028 (1984). 
18. J. J. CALABRESE, M. A. DUBSON, D. A. RUDMAN, and J. C. 

GARLAND. Bull. Am. Phys. Soc. 30, 564 (1985). 
19. Y. SONG. T. W. NOH. S.-I. LEE. and J. R. GAINES. Bull. Am. 

Phys. SO;. 31, 577 (1986). 
20. Y. KANTOR and I. WEBMAN. Phys. Rev. Lett. 53, 511 (1984). 
21. M. GRONAUER, A. KADUR, and J. FRICKE. In Aerogels. Edited by 

J. Fricke. Springer-Verlag, Berlin, Federal Republic of Ger- 
many. 1986. p. 167. 

22. D. W. SHAEFER, and K. D. KEEFER. Phys. Rev. Lett. 56, 2199 
(1986). 

23. D. W. SCHAEFER, J. E. MARTIN, and K. D. KEEFER. J. Phys. 
Coll. C3, Suppl. 3, 46, C3-127 (1985). 

24. R. J. ROBERTSON, F. GUILLON, and J. P. HARRISON. Can. J. 
Phys. 61, 164 (1983). 

25. J. H. PAGE and R. D. MCCULLOCH. Phys. Rev. Lett. 57, 1324 
(1986). 

26. R. E. BOLZ and G. L. TUVE (Editors). CRC handbook of applied 
engineering science. The Chemical Rubber Company, Cleveland, 
OH. 1970. p. 138. 

27. B. I. HALPERIN, S. FENG, and P. N. SEN. Phys. Rev. Lett. 54, 
2391 (1985). 

28. E. STANLEY and A. CONIGLIO. In Percolation structures and pro- 
cesses. Edited by G. Deutscher, R. Zallen, and J. Adler. Adam 
Hilger, Bristol, England. 1983. 

29. L. M. SCHWARTZ, D. L. JOHNSON, and S. FENG. Phys. Rev. Lett. 
52, 831 (1984); S. FENG. Phys Rev. B, 32, 510 (1985); L. M. 
SCHWARTZ, S. FENG, M. F. THORPE, and P. N. SEN. Phys. 
Rev. B, 32, 4607 (1985). 

30. R. C. ZELLER and R. 0 .  POHL. Phys. Rev. B, 4, 2029 (1971). 
31. A. R. RUTHERFORD, J. P. HARRISON, and M. J. STOP. J. Low 

Temp. Phys. 55, 157 (1984). 
32. S. ALEXANDER and R. ORBACH. Phys. Lett. 98A, 357 (1983). 
33. I. WEBMAN and G. S. GREST. Phys. Rev. B, 31, 1689 (1985). 




