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Polymorphism of stable collagen fibrils

Samuel Cameron, Laurent Kreplak and Andrew D. Rutenberg *

Collagen fibrils are versatile self-assembled structures that provide mechanical integrity within mammalian

tissues. The radius of collagen fibrils vary widely depending on experimental conditions in vitro or anatomical

location in vivo. Here we explore the variety of thermodynamically stable fibril configurations that are

available. We use a liquid crystal model of radial collagen fibril structure with a double-twist director field.

Using a numerical relaxation method we show that two dimensionless parameters, the ratio of saddle-splay

to twist elastic constants k24/K22 and the ratio of surface tension to chiral strength ~g � g/(K22q), largely specify

both the scaled fibril radius and the associated surface twist of equilibrium fibrils. We find that collagen fibrils

are the stable phase with respect to the cholesteric phase only when the reduced surface tension is small,

~g t 0.2. Within this stable regime, collagen fibrils can access a wide range of radii and associated surface

twists. Remarkably, we find a maximal equilibrium surface twist of 0.33 rad (191). Our results are compatible

with corneal collagen fibrils, and we show how the large surface twist can explain the narrow distribution of

corneal fibril radii. Conversely, we show how small surface twist is required for the thermodynamic stability of

tendon fibrils in the face of considerable polydispersity of radius.

1 Introduction

Tropocollagen is the most abundant protein in the human
body, integral to the structure of fibrous tissues such as skin,
tendon, and cornea. There are at least 28 different tropocolla-
gen molecules found in vertebrates,1 with types I, II, III, V, XI,
XXIV, XXVII capable of forming the rope-like mesostructures
that are collagen fibrils.2 The assembly of tropocollagen mole-
cules into collagen fibrils depends on the local environment.
A suitable environment in vivo is within the extra-cellular space3

after procollagen, a precursor to tropocollagen, is secreted from
cells and cleaved by enzymes.4 In vitro, ionicity, pH, and
temperature of the solvent,5,6 as well as concentration,7 have
been shown to affect whether fibrillogenesis occurs.

Since fibrils are approximately cylindrical with radius R, it is
convenient to separately consider their axial structure along the
fibril’s cylindrical axis and their radial structure within a circular
cross section. The axial D-banding has been well studied and
remains close to 67 nm for both type I8 and type II9 collagen.
Conversely, the observed radial ultrastructure of collagen fibrils
depends on both the tropocollagen type and the anatomic location
of the fibril in vivo,10–13 and on solution conditions in vitro.5

Factors such as temperature and ionicity of solution,5 or fibril
age in vivo,10,14 affect the observed fibril radii.

In this work, we focus on radial structure. We are concerned
with what constrains the fibril radius, R, but also with the

orientation of collagen molecules both at the fibril surface and
within the fibril.

Observing the orientation of molecules on the interior of a
circular cross section of fibril is difficult experimentally, requir-
ing diffraction studies15 or electron tomography.16 However,
careful high resolution imaging can reliably characterize the
molecular orientation at the surface of fibrils. Early work using
transmission electron microscopy to image freeze-fractured
fibrils found that molecules at the fibril surface were tilted
with respect to the fibril axis, with the degree of tilt depending
on where the fibrils were found anatomically.17,18 Further work
demonstrated that tendon fibrils, while exhibiting a large range
of R values (15–200 nm), have limited molecular surface tilt
C51,19,20 while corneal fibrils, with a narrower range of R from
15–20 nm, exhibit much larger surface tilt, C181.16,21,22 Differ-
ent hypotheses of radial molecular orientation have been
proposed to fit these experimental results10,16,20—but without
consideration of thermodynamic stability.

Recently, an equilibrium liquid crystal model of radial
collagen fibril structure was developed to predict molecular
configurations of tropocollagen within individual fibrils.23

Consistent with the surface tilt observations mentioned above,
a double-twist geometry of tropocollagen molecules was
imposed within the fibril. With this double-twist geometry
(see Fig. 1), the twist angle of molecules with respect to the
fibril axis at a given radial distance, c(r), fully describes
the molecular orientation of the tropocollagen molecules. The
corresponding elastic free energy functional,24 valid for arbitrary
smoothly varying c(r), is parameterized by the costs of twist
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distortion, K22, bend distortion, K33, saddle-splay distortion,
k24, surface tension, g, and the preferred pitch of a cholesteric
phase, 2p/q. By minimizing the free energy per unit volume
of fibril with respect to c(r), the equilibrium fibril radius,
Req, and the surface twist angle, c(Req) were determined for
different values of the model parameters. These Req and c(Req)
were then compared with experimental findings. The model23

showed good agreement with corneal fibrils, which have
small radius and large surface tilt. However, it was unclear
whether it could also capture the smaller surface tilt and the
broad range of radii observed for tendon fibrils.

The physical mechanism of collagen fibril formation in vivo,
as well as the self-assembly of tropocollagen molecules into
collagen fibrils in vitro, is poorly understood. In vitro studies7

have demonstrated that uniform fibril formation will occur
without cross-linking or other non-equilibrium processes. This
suggests that an equilibrium description of fibrils may be
appropriate. Furthermore, we hypothesize that fibrillogenesis
in vivo also exploits equilibrium self-assembly processes. Better
understanding whether and how equilibrium processes could
lead to observed radial collagen structures can then help us
identify when non-equilibrium processes must also be affecting
fibril structure.

In this paper, we use an efficient numerical relaxational
method to expand on previous work with the double-twist
model, which allows us to map out equilibrium values of fibril
radius, surface twist angle, and energy per unit volume of fibril
within the entire parameter space of stable fibrils. Using
dimensional analysis, we show that just three reduced para-
meters fully control the experimentally observable behaviour of
the system. We use this comprehensive approach to confront
both corneal and tendon fibril phenomenology.

2 Model
2.1 Elastic free energy density

Individual tropocollagen molecules within collagen fibrils are
essentially rod-like, with a length of B300 nm, and a diameter
of B1.5 nm. To describe the molecular orientation within
fibrils, we use a director field, n(r), which is a unit vector that
represents the local, average orientation of molecules within
the fibril.

Following earlier work,23 we propose that the fibril free
energy depends on elastic energy contributions from the orien-
tation field n(r) together with an interfacial energy. We use a
leading order gradient expansion for the elastic contributions.
The elastic free energy density24 of a chiral liquid crystal system
with no external stress is

fel ¼
1

2
K11 r � nð Þ2 þ 1

2
K22 n � r � nþ k2

K22

� �2

þ 1

2
K33 n� r� nð Þð Þ2 þ k13r � r � nð Þn

� 1

2
K22 þ k24ð Þr � n� ðr � nÞ þ nðr � nÞð Þ;

(1)

where we have taken fel = 0 in the cholesteric phase. From the
last two terms, we see that it is possible to have fel o 0 even
when all elastic constants are positive. In using this free energy,
we assume that any gradients in n are slowly varying compared
to the molecular length scale (C1.5 nm). Higher order gradient
terms are thereby ignored.25

Each term in eqn (1) corresponds to a specific distortion.
The terms with K11, K22, and K33 correspond to the usual splay,
twist, and bend deformations,26 and are always greater than
zero. k2 is the ‘‘chiral strength’’ and can be of either sign. For
the double twist configuration, a change in sign of k2 corresponds
to a change in the handedness of fibril twist, i.e. c-�c. Thus we
choose k2 4 0, consistent with the observed right-handed fibril
twist.10,13 The ratio

q � k2/K22, (2)

is proportional to the inverse cholesteric pitch within choles-
teric phases. k13 and k24 are the splay-bend and saddle-splay
elastic constants, respectively. The terms with k13 or k24 can be
negative, and when integrated will appear as surface terms.
They contribute to equilibrium phases that have a proliferation
of interfaces, such as a system of collagen fibrils.

2.2 Cholesteric and double-twist fibril phases

Equilibrium phases of collagen molecules are determined by
the form of n that minimizes the total free energy of the system.
We consider two phases. The first is a bulk cholesteric phase,
which has been observed for concentrated tropocollagen solu-
tions in vitro.7 The director field is e.g. n = cos(qz)x̂ + sin(qz)ŷ for
a cholesteric phase with a helical axis along the z-direction, and
has r�n = 0 and r � n = �qn. Inserting this into eqn (1) gives
f = 0, for all values of the elastic constants with the given q. Any

Fig. 1 Double-twist configuration for a cylindrical fibril of radius R. The
green lines represent the average orientation of collagen molecules for
three different r A [0, R]. The twist angle, c(r), is the angle between the
average orientation and the fibril (z) axis. The bottom cylinder illustrates the
surface twist, c(R). The smaller cylinders, outlined in grey, are cutaway
views with r o R.
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phase with average free energy density E o 0 is therefore
thermodynamically stable with respect to the cholesteric phase.

The second phase we consider has individual fibrils with a
double-twist director field,23

n = �sinc(r)/̂ + cosc(r)ẑ, (3)

where c(r) is the angle between the director field and the fibril
axis. c(R) is then the ‘‘surface twist’’ (molecular tilt) of a fibril of
radius R. Since we are interested in the radial structure,
we ignore contributions from axial packing (e.g. D-banding)
of collagen molecules along the fibril. This amounts to an
assumption that coupling between radial and axial structure is
weak (though see, e.g., ref. 27 and 28).

A surface energy term must be included to account for the
cost of creating an interface between individual fibrils and the
surrounding material. For a single fibril, the free energy per
unit length is then

EL � 2p
ðR
0

rffibril r;cðrÞ;c0ðrÞð Þdrþ 2pgR (4)

where 2pgR is the energetic cost of the interface between the fibril of
cross-sectional circumference 2pR and its surroundings.23 (Note that
while the bulk k13 and k24 terms of eqn (1) integrate mathematically
into surface contributions, they are distinct from the interfacial
cost g.) The cross-sectional area of a single fibril is pR2. Thus,

EðRÞ ¼ EL

pR2
¼ 2

R2

ðR
0

rffibrildrþ
2g
R
; (5)

where E is the average free energy per unit volume of fibril. We refer
to the relationship between E and R as the energy landscape.

Using the double-twist structure eqn (3) in the elastic free
energy density eqn (1) gives the free energy density,23

ffibril ¼
1

2
K22 q� c0 � sin 2c

2r

� �2

þ 1

2
K33

sin4 c
r2

� 1

2
K22 þ k24ð Þ1

r

d sin2 c
dr

:

(6)

Note that the K11 and k13 terms have dropped out since r�n = 0
for a double-twist director field.

Minimizing eqn (5) with respect to the function c(r) using
standard calculus of variations techniques,23 we arrive at the
boundary value problem

rc0ð Þ
0
¼ qþ K33

K22

sinð2cÞ
r

sin2 c� cosð2cÞ q� sinð2cÞ
2r

� �
; (7a)

c(0) = 0, (7b)

c0ðRÞ ¼ qþ k24

K22

sinð2cðRÞÞ
2R

; (7c)

where eqn (7c) is a natural boundary condition which follows
from the functional minimization procedure, and c0 � dc/dr.
We must have c(0) = 0, as any non-zero twist at r = 0 would
imply singular ffibril and an infinite E from eqn (5) and (6).

2.2.1 Dimensional analysis. There are five parameters
which control the behavior of our model, q, g, K22, K33, and

k24. We can reduce these to three dimensionless variables
together with a dimensionless energy (see Appendix A),

K̃33 � K33/K22,

~g � g/(K22q),

k̃24 � k24/K22, and

Ẽ � E/(K22q2), (8)

which we utilize for the remainder of the paper. This lets us
express quantities of interest in terms of dimensionless para-
meter combinations:

Ẽ = g1(qR, K̃33, ~g, k̃24), (9a)

qR = g2(K̃33, ~g, k̃24), (9b)

c(qr) = g3(qr, K̃33, ~g, k̃24), (9c)

where the functions g1, g2, and g3 are determined numerically,
and we solve c as a function of dimensionless radius qr. We
have reduced our parameter space from five to three dimen-
sions, together with an inverse length q that sets the scale for R.

The elastic constants for collagen solutions are not well
documented. We use values determined experimentally from
liquid crystal systems with molecules similar to tropocollagen
molecules. For the polypeptide a-helical chain poly-g-benzyl-L-
glutamate (PBLG), the ratio of bend to twist elastic constant
saturates at K33 C 30K22 for aspect ratios L/D \ 100, where L is
the length and the diameter D of PBLG is between 1.5 nm to
2.5 nm.29 The aspect ratio of tropocollagen, L/D = 200, then
leads us to use K̃33 = 30 for this paper. (In Appendix B we
explore the effects of different K̃33 values on our results for the
surface twist.) Differences in solution conditions, molecular
composition, and concentration can in principle affect K̃33,30–32

however approximately the same ratio is observed over a range
of temperature and concentration in long-aggregates of lyotro-
pic chromonic liquid crystals.33

2.3 Energy minimization

We solve eqn (7) numerically using finite-difference relaxation.34

We have also derived an explicit (but unwieldy) power-series
solution, see Appendix C. We use the leading cubic terms of this
power-series as an initial guess for our relaxation approach, and
use higher-order solutions as occasional checks that the relaxation
approach has converged. The iterated relaxation converges on the
c(qr) that minimizes the dimensionless version of eqn (5) for a
selected qR. We repeat this procedure for different qR to determine
the energy landscape, Ẽ(qR), for a given parameter set.23

We are particularly interested in the dimensionless radius
qReq that minimizes Ẽ(qR). To find qReq, we used a standard
golden ratio search. Our search bounds were qR A [10�5, 1].
If Ẽeq � Ẽ(qReq) o 0 for a set of parameter values, then the bulk
fibril phase is an equilibrium phase with respect to the choles-
teric for those parameters. To avoid cumbersome notation, we
will use the equilibrium results, e.g. c(qr) � ceq(qr), unless
otherwise noted.
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3 Results
3.1 Narrow equilibrium regime

In Fig. 2, we show the energy landscape for double-twist
collagen fibrils as the dimensionless parameters ~g and k̃24 are
varied. The ratio K̃33 = 30 is held constant. The colour and
contours represent the dimensionless minimum energy, Ẽeq,
for double-twist fibrils—green indicates equilibrium fibrils
with respect to the cholesteric phase, while red indicates
metastable fibrils. We see that there is only a small region of
equilibrium fibrils, where we require�1 r k̃24 t 1.2 and ~g t 0.2.
The minimum fibril energy Ẽeq increases monotonically with
increased ~g or with decreasing k̃24.

The energies shown in Fig. 2 represents the energy of
double-twist fibrils that have a finite radius R. For larger values
of ~g there is no local minimum at R 4 0 (gray region), and we
would instead expect to observe a bulk cholesteric phase. This
is also what we expect in most of the metastable regime, and
arises because the energy cost of the interface in a fibril phase
is large due to the surface tension g.

For k̃24 4 1, we always observe a divergent minimum energy
for R - 0. When both a divergent minimum for R - 0 and a
local minimum at finite R is present, we illustrate the local
minimum behaviour only (i.e. shading and contours in non-gray
regions with k̃24 4 1 represent the local minima with R 4 0). The
divergent minimum for R - 0 arises because sufficiently large k24

encourages interface proliferation in the fibril phase. This can be

seen explicitly with eqn (5) and (6) using a linearly varying
ansatz for the pitch, c = rc(R)/R. For c(R) { 1 we obtain
E = c(R)2(K22 � k24)/R2 + 2g/R. For k24 4 K22 we obtain
E - �N as R - 0. However, this singular solution is for
a continuum model that applies only when fibril radii are
large with respect to the diameter of individual molecules,
d = 1.5 nm. We would also expect higher order gradient terms,
absent in eqn (1), to change (and perhaps eliminate) any
singular solution at R E 0. Such additional terms could also
modify the local minima at R 4 0.

To confront our double-twist solutions with experimental mea-
surements of collagen fibrils, we investigate our model’s predic-
tions of surface twist, cReq

� c(qReq), and fibril radius, Req.

3.2 Experimental observables: surface twist and fibril radius

Fig. 3 shows the surface twist landscape. Corresponding with
Fig. 2, the gray regions at the upper left and to the right have no
fibril phases. cReq

increases with increasing ~g and decreasing k̃24,
with blue lines of constant cReq

(in radians) shown. Double-twist
phases that are stable with respect to the bulk cholesteric phase
occur to the left of the black dashed line (Eeq o 0), as indicated.

Two surface twist values of particular interest are cReq
= 0.1

rad and cReq
= 0.31 rad, being typical surface twist angles

observed in tendon fibril and corneal fibril, respectively. We
have labeled these two values of surface twist with blue dashed
lines in Fig. 3. Furthermore, other types of fibrils in vivo tend to
have smaller surface twists than corneal fibrils r0.31 rad,
which gives the corneal dashed line in Fig. 3 further meaning
as an upper limit of surface twist values observed in vivo.10,17,18

Fig. 2 Phase diagram of stable and meta-stable double-twist phases in
the k̃24 vs. ~g plane (with K̃33 = 30). The green region indicates the existence
of double-twist fibrils that are stable with respect to the cholesteric phase,
with Eeq o 0. The red region indicates meta-stable minima with respect to
the cholesteric phase, with Eeq Z 0. Contours indicate the values of the
dimensionless free energy density Ẽeq � Eeq/(K22q2). The inset white curve
labeled ‘‘double-twist minima for R 4 0’’ demonstrates a typical relation-
ship between E and R for values of ~g with k̃24 r 1. For k̃24 4 1 (above
dashed white line), there is an additional, divergent global minimum as
R - 0, illustrated by the inset curve labeled ‘‘additional divergent minima
at R = 0’’. Gray regions do not have any local minima with 0 o R o N.
Note that k̃24 � k24/K22, ~g � g/(K22q), and K̃33 � K33/K22.

Fig. 3 Contours of surface twist cReq
� c(qReq) (solid and dashed blue) in

radians, vs. the reduced saddle-splay elastic constant k̃24 and the reduced
surface tension ~g, all with K̃33 = 30. cReq

= 0.1 rad and cReq
= 0.31 rad are

typical surface twists observed in tendon and cornea fibrils, respectively,
and are distinguished above with dashed contour lines. Meta-stable (Eeq Z 0)
and stable (Eeq o 0) fibril phases with respect to the bulk cholesteric phase are
separated by the black, dashed line. The gray areas correspond to parameter
space regions for which no stable or meta-stable double-twist configurations
are found. Note that k̃24 � k24/K22, ~g � g/(K22q), and K̃33 � K33/K22.
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Remarkably, this observed upper bound of surface twist
approximately coincides with our theoretical upper bound deter-
mined by the stable equilibrium regime of double-twist fibrils
(i.e. the region to the left of the black dashed line in Fig. 3).

We also obtain reduced equilibrium fibril radii, qReq, as
shown in Fig. 4. We see that qReq increases with increasing ~g,
and decreases with increasing k̃24—the same qualitative beha-
vior as cReq

. For fixed q the behavior of Req as other parameters
are varied is immediately given: the radius decreases as k24

increases, or as the surface tension g decreases. Increasing K22

moves directly towards the origin, and can either increase Req

(for fibrils with small cReq
) or decrease Req (for fibrils with

cReq
\ 0.2 rad, or 101). If we increase q and leave other

parameters fixed, we see that the scaled surface-tension ~g will
decrease—leading to smaller qReq values. Since we have
increased q, we then obtain even smaller Req values.

3.3 Non-linearity of twisting within fibril

From our free energy functional, at the fibril centre collagen
molecules are aligned with the fibril axis, with c(0) = 0. For
r 4 0, we illustrate c(qr) for six parameter values in Fig. 5a–c.
All of the curves exhibit two properties: (1) c(qr) increases
monotonically with qr, and (2) the twist gradient also increases
with radius, i.e. c00(qr) 4 0. With these two properties in mind,
we quantify the double-twist nonlinearity with the ratio of the
twist angle gradient at the fibril surface, cReq

0 � c0(qReq), to the
twist angle gradient at the fibril centre, c0

0 � c0(0), as shown in
Fig. 5d. Nonlinearity increases with increasing ~g, and decreases
with increasing k̃24. We see that equilibrium fibrils may have
significant twist nonlinearities, up to cReq

0/c0
0 E 3.

4 Discussion

We identified dimensionless parameter combinations (eqn (9))
that reduced the number of independent parameters in our
equilibrium free energy density (eqn (5)) for the collagen
orientation within double-twist fibrils (eqn (3)). We solved the
dimensionless equations numerically, and identified a narrow
parameter regime (green region of Fig. 2) that produces double-
twist fibrils that are thermodynamically stable with respect to a
bulk cholesteric phase.

The parameters of our model are the coarse-grained elastic
constants that determine the free energy costs of spatial-
gradients of the collagen orientation (K22, K33, K22, k24) together
with a surface energy g and q. One dimensionless parameter
combination is relatively well determined by the long semi-
flexible configuration of individual collagen molecules (K̃33 �
K33/K22 = 30). Remarkably, we find that only two dimensionless
parameter combinations (k̃24 � k24/K22 and ~g � g/(K22q)) are
then required to determine both the surface twist cReq

(Fig. 3)
and the dimensionless radius qReq (Fig. 4) of equilibrium
collagen fibrils.

We find that equilibrium surface twists should all satisfy an
upper bound: cReq

r 0.33 rad (191), which approximately
coincides with the maximum surface twist reported in the
in vivo literature.16

4.1 Polymorphism of collagen fibrils

A surprise in considering Fig. 2–4 is the wide range of equili-
brium configurations available to collagen fibrils over a rela-
tively narrow parameter regime. This polymorphism allows
different aspects of fibril structure to be emphasized for
different parameterizations.

4.1.1 Collagen fibril stability. The thermodynamic stability
with respect to the cholesteric phase is assessed by the free
energy per unit volume, as illustrated in Fig. 2. We see that the
most stable (lowest energy) fibrils are in the upper-left corner
with a combination of small g and large K22 and q—above point
‘‘1’’ in Fig. 5, with k24 C K22. Note that what is presented is
Ẽ � Eeq/(K22q2), so that with large K22 and q the cohesion energy
is even larger.

One consequence of selecting for more stable fibrils is that
the expected surface twist values would be quite small, accord-
ing to Fig. 3. Interestingly, we would expect a uniform twist
gradient (Fig. 5) in this regime as well. In contrast, to allow for
fibrils with larger surface twist, ~g must be fine-tuned to values
near the stability boundary—close to point ‘‘3’’ in Fig. 5—making
fibrils with large surface twist (and nonlinear c(qr)) less thermo-
dynamically stable than their small twist, linear counterparts. We
note that all fibrils which are stable with respect to the cholesteric
have cReq

t 0.33 rad.
The relationship between thermal stability and fibril radius

is complicated by the scaling of Req with q, as the contours in
Fig. 4 depend on q as well as ~g and k̃24. Thus, to investigate the
relationship between thermal stability and fibril size, we look at
the two ways in which large (small) radius equilibrium fibrils
can be generated from our model. The first is to maximize

Fig. 4 Contours of scaled equilibrium fibril radius qReq as a function of
the reduced saddle-splay elastic constant, k̃24, and the dimensionless
surface-tension ~g, all with K̃33 = 30. qReq increases with increasing ~g, and
decreases with increasing k̃24. Values of qReq to the left of the black,
dashed line are stable with respect to the bulk cholesteric phase (Ẽeq o 0).
The gray areas correspond to parameter space regions for which no
stable or meta-stable double-twist configurations are found. Note that
k̃24 � k24/K22, ~g � g/(K22q), and K̃33 � K33/K22.
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(minimize) qReq at a constant q. From Fig. 4, this would be
achieved by fine-tuning ~g close to (far from) the stability
boundary. This approach would indicate that smaller fibrils
are more thermodynamically stable than large fibrils.

The second approach to generate large (small) fibrils is to
decrease (increase) the inverse pitch q at a constant qReq, while
also keeping ~g and k̃24 constant. In this approach, you would
stay at the same point in Fig. 2 and 4, and so Ẽ and qReq would
remain constant. As you decrease (increase) q, fibril radius
increases (decreases), but thermodynamic stability decreases
(increases) as well. Thus, both approaches to increasing fibril
radius tend to decrease thermal stability. Given this, it is
unclear what functional role large fibrils might have, if it is
not to increase stability. While large fibrils are expected to be
individually stronger than small ones, the packing fraction of
large or small fibrils would be the same and so would bulk
moduli of closely packed fibrils.

4.1.2 Influence of collagen types. Collagen fibrils in vivo
generally contain a tissue-dependent mixture of collagen types.28,35

For example, while well-studied tendon and corneal fibrils are
predominantly composed of type-I collagen they contain an
admixture of type-III collagen.36 The best characterized heterotypic
mixtures in vitro has been blends of types I and III collagen,37–39

though I/V40,41 and II/III blends42 have also been studied.
The distribution of collagen types within individual fibrils

has been qualitatively assessed from immunoassay double-
labeling. Both type I and type III are seen on fibril surfaces37–39

indicative of homogeneity (see, however28). Under the assumption

that mixtures of collagen types are spatially homogeneous within a
fibril, the elastic parameters of the mixture should be interpola-
tions between those of the pure collagen types.31 In which case,
our equilibrium picture would apply to heterotypic fibrils—and the
reduced elastic parameters of mixtures would sit on curves
between those of the pure types.

Varying the composition of heterotypic I/III fibrils leads to
variations of fibril radius39—from 0.1 mm (entirely type I) to
0.025 mm (entirely type III). Our model can reproduce that either
by moving the reduced parameters, e.g. ~g, or by changing q.
Changes to ~g would be associated with a change in the surface
twist, while changes to q could be assessed in the cholesteric
phase. However, neither surface twist nor cholesteric q have been
systematically characterized in type I/III mixtures.

4.2 Experimental guidance on elastic parameters

Within cholesteric phases, the cholesteric pitch P = 2p/q directly
assesses q. Polarized light microscopy observations of rat tail
tendon tropocollagen solubilized in acid show that cholesteric
phases emerge at concentrations above 50 mg mL�1, with
decreasing pitch from P C 20 mm at B50 mg mL�1 to
P C 0.5 mm at B400 mg mL�1.43 While we might expect variation
in q for fibrils due to variable solution conditions,30,31 we expect a
similar range of values q A [0.1p mm�1, 4p mm�1].

The surface tension, g, quantifies the cost of an interface
between two bulk phases. In our case, the interface is between
individual fibrils and the surrounding aqueous collagen solution.
No experimental measurements of g have been reported

Fig. 5 Nonlinearity of the twist angle c(r) (0 r r r Req), where Req is the fibril radius within the double twist fibril phase for different parameter values. In
(a–c), six different double-twist configurations, c vs. scaled radial distance qr, are illustrated for the parameter values indicated in (d)—with corresponding
labels from 1–6. 1, 3 and 5 are points on the k̃24 = 0.75 line; 2, 4, and 6 are points on the k̃24 = 0.1 line. Both c and c0 increase monotonically with r for all
parameter values. The contours in (d) indicate the ratio of surface twist gradient at the surface to that in the fibril centre, c0(qReq)/c0(0) � cReq

0/c0
0, which

captures non-linearities in the double-twist configuration. As before, the black dashed line separates fibrils that are stable with respect to the bulk
cholesteric phase (left of line) from those which are only meta-stable (right of line). The gray areas of d correspond to parameter space regions for which
no stable or meta-stable double-twist configurations are found.
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for collagen. However, we assume surface-tensions are similar in
magnitude to the nematic–isotropic interface for liquid crystal
systems. A lower bound of surface tension of an isotropic–nematic
interface is that of p-azoxyphenetole, for which g\ 0.5 pN mm�1.44

Conversely, a larger value of g reported in this type of system is that
of MBBA, with g = 24 pN mm�1.45,46 Other experimental values fall
within this range.47–49 Using Onsager’s theory of hard rods,30 a
theoretical expression of g has been derived for isotropic–nematic
interfaces near the phase transition.50 Applying this result to our
system, we obtain g B 2.3 pN mm�1 which is consistent with the
experimental bounds. Accordingly, we expect g A [0.5 pN mm�1,
25 pN mm�1].

To determine the value of the twist elastic constant, K22, for
collagen fibrils, we again use typical values of liquid crystal
systems. For PBLG, a range of K22 values from 0.6 pN to
6.2 pN51–53 have been measured depending on the solvent
used. In these measurements, no significant concentration52

or molecular weight53 dependence has been observed. We
therefore expect K22 A [0.6 pN, 6 pN].

Experimentally determining the saddle-splay elastic con-
stant, k24, is difficult due to the surface-like nature that it
represents in the free energy. The saddle-splay to twist ratio
has been estimated to be k24/K22 C 2 for nematic systems using
deuterium nuclear-magnetic-resonance54 and polarization
microscopy.55 No measurements of k24 for long, chiral mole-
cules similar to tropocollagen have been reported. Theoretical

calculations predict that k24 ¼
1

2
K11 � K22ð Þ,25 which with

K11 4 K22
32,56 implies k24 Z 0. However, this result was derived

through an interaction energy (vs. a free energy), and thus is
likely valid only for thermotropic systems.

4.3 Comparison with in vivo fibril ultrastructure

Our theoretical equilibrium treatment highlights the impor-
tance of surface twist, since it significantly constrains our
model parameterization. (The comparison between experiment
and our model is not as definitive when looking at Req, because
we can only constrain the product qReq.) The surface twist angle
measured in vivo is correlated to the anatomical location of the
fibril, as well as the type of tropocollagen found within the
fibril.10,11,18,28,57 Two well-studied fibril types in vivo are corneal
fibrils, which have large surface twists C0.31 rad,16 and tendon
fibrils, which have fairly small surface twists C0.1 rad.58

4.3.1 Corneal and other helicoidal fibrils. For the high
surface twist of corneal collagen fibrils, with cReq

= 0.31 rad,
we show in Fig. 6 the values of Ẽeq, k̃24, and qR as a function
of ~g. These are determined by calculating the cReq

= 0.31 rad
contour line (i.e. k̃24 vs. ~g line) in Fig. 3, and mapping this
relationship onto Fig. 2 and 4, to determine Ẽeq and q̃Req,
respectively. Restricting ourselves to thermodynamically stable
parameterizations, with Ẽeq o 0, from Fig. 6 we expect that
~g A [0.1, 0.2], k̃24 A [0.6, 1.25], and qReq A [0.2, 0.4].

Human corneal fibrils have a typical diameter of 30–35 nm.16,22,59

We consider a radius of R C 0.015 mm for convenience. This then
implies an approximate range of expected inverse pitch values
q A [13, 27]. This range abuts the expected range from

Section 4.2 at larger qReq, when ~g C 0.1 and k̃24 C 0.75—this
is near point ‘‘3’’ of Fig. 5.

Using ~gC 0.1 and q C 13 mm�1, our expected range of K22 A
[0.6, 6] pN mm�1 from Section 4.2 implies gA [1.6, 16] pN mm�1.
This is entirely within the expected range of gA [0.5, 25] pN mm�1.
As mentioned, k24, is not well constrained—but nevertheless
k̃24 C 0.75 is close to the expected scale.54,55

Corneal fibrils are very close to the stability boundary
between fibrils and the cholesteric phase due to their large
surface twists. This implies that only a very narrow range of
fibril radii are stable with respect to the cholesteric phase, with
Ẽ o 0. In Fig. 6(b), in addition to qReq, we indicate the
minimum and maximum values for stable fibrils, qRmin and
qRmax, respectively. For a given ~g and k̃24, qRmin and qRmax are
defined such that Ẽ(qRmin) = 0, Ẽ(qRmax) = 0 and qRmin o qReq o
qRmax. We see that precisely at ~g C 0.1, there is only a very

Fig. 6 Radial fibril structure and stability of corneal fibrils. Surface twist is
restricted to cReq

= 0.31 (i.e. along the 0.31 contour in Fig. 3)—the
experimentally measured surface twist of corneal fibrils. (a) Reduced
saddle-splay k̃24 vs. reduced surface-tension ~g is indicated in black squares
and dots, while reduced minimum energy-density Ẽeq vs. ~g is indicated by
green triangles and dots. Dots indicate where fibrils are only meta-stable
with respect to the cholesteric phase, while larger symbols indicate where
fibrils are stable with respect to the cholesteric, Ẽeq o 0. (b) The dimensionless
fibril radius qR vs. ~g. The equilibrium radius that minimizes Ẽ, qReq, is indicated
by stars (when Ẽeq o 0) and dots (when Ẽeq Z 0). The minimum and
maximum fibril radii that are stable with respect to the cholesteric (i.e. qR
values such that Ẽ(qRmin) = 0 and Ẽ(qRmax) = 0, with qRmin o qReq o qRmax),
are indicated by diamonds and triangles, respectively.
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narrow range of stable fibril radii available for corneal fibrils.
Furthermore, a narrow range of corneal fibril radii is observed59

and is required for corneal transparency.60–62

In Fig. 8 of Appendix B, we examine different values of K̃33 to
determine whether the correlation between narrow stability
and large surface twist is sensitive to our parameter choices.
We find that this behaviour persists in a wide range of
K̃33 A [10, 40], for cReq

C 0.31 rad. From this, we hypothesize
that the large surface twist of corneal fibrils may be a result of
being at the stability boundary, which in turn is required to
narrow the range of accessible fibril radii. Cross-linking after
fibrillogenesis could then mechanically stabilize corneal fibrils.

Other ‘‘helicoidal’’ or ‘‘C’’-type57 collagen fibrils also exhibit
large surface twists with cReq

C 0.3 rad and a narrow unimodal
distribution of fibril radii.10,18,28,57 These helicoidal fibrils are
found in e.g. skin, interstitial stroma, and nerve and tendon
sheaths. Despite their similarity of surface twist, in each tissue
helicoidal fibrils exhibit a different unimodal radius—from
0.015 mm to 0.050 mm.28 Larger radii than seen in corneal
fibrils could be accommodated in our model by smaller q, or by
different points along the stability boundary of Fig. 3.

Interestingly, some originally helicoidal fibrils from skin
that have been disassociated and reconstituted are no longer
helicoidal63,64—though see ref. 65. This implies that fibrillo-
genesis conditions are important in determining their reduced
parameterization; parameters are not simply determined by the
molecular type, but also by the environment. While our
approach can constrain reduced parameterization with observa-
tions of fibril surface twist and radius, a direct assessment of
elastic constants within the context of individual fibrils would
require different approaches.

4.3.2 Tendon fibrils. For the low surface twist of tendon
collagen fibrils, with cReq

C 0.1 rad, we show in Fig. 7 the values
of Ẽeq, k̃24, and qR as a function of ~g. These correspond to
mapping the cReq

= 0.1 rad contour line from Fig. 3 to Fig. 2 and 4,
respectively. Restricting ourselves to thermodynamically stable
parameterizations, with Ẽeq o 0, we expect that ~g A [0, 0.07],
k̃24 A [�1, 1.1], and qReq A [0.01, 0.2]. While most of these ranges
are larger than those of corneal fibrils, the values of qReq for
tendon fibrils are significantly smaller.

Tendon fibrils in vivo have a large range of radii, from
0.02 mm to 0.2 mm,66,67 and the distribution varies with age
and tissue type. Significantly, fibrils within the same tissue
exhibit a broad range of radii. Nevertheless, the average fibril
tendon radius R = 0.08 mm from older mouse tails67 is much
larger than typical corneal fibrils. This implies expected values of
q A [0.13, 2.5] mm�1. These inverse pitch values are significantly
smaller than for corneal fibrils, but are entirely within the expected
range from Section 4.2. Combining possible ranges, we then expect
the surface tension g A [0, 1] pN mm�1. This is in the lower end of,
but largely within, the range expected from Section 4.2.

Within an entirely equilibrium picture, to have a broad
distribution of equilibrium tendon fibril radii within the same
section of tissue66,67 would imply a broad range of reduced
parameters, and hence of conditions during fibrillogenesis.
Tendon fibrils in particular are almost entirely comprised of

type-I collagen, and so this variation cannot be attributed to
variations of composition. It is unlikely such parameter varia-
tion occurs within a single tissue. Rather, we believe that non-
equilibrium processes are involved in the determination of
tendon fibril radii—as proposed by Kalson et al.67

Fibrils with a small surface twist are expected to be quite
stable with respect to the cholesteric phase (see Fig. 2). This
implies that fibrils at a broad range of different radii around
the equilibrium will also be stable with respect to the choles-
teric, as shown by the difference in magnitude of qRmin and
qRmax in Fig. 7b. We note that there is at least a 100-fold range
of stable radii available between Rmin and Rmax. The observed
10-fold range of tendon fibril radii fits within this larger range
of stable fibrils with respect to the cholesteric.

Our hypothesis then is that non-equilibrium cross-linking
works to stabilize fibril radii that are away from Req, but only

Fig. 7 Radial fibril structure and stability of tendon fibrils. Surface twist is
restricted to cReq

= 0.1 (i.e. along the 0.1 contour in Fig. 3)—consistent with
experimentally observed surface twist of tendon fibrils. (a) Reduced
saddle-splay k̃24 vs. reduced surface-tension ~g is indicated in black squares
and dots, while reduced minimum energy-density Ẽeq vs. ~g is indicated by
green triangles and dots. Dots indicate where fibrils are only meta-stable
with respect to the cholesteric phase, while larger symbols indicate where
fibrils are stable with respect to the cholesteric, with Ẽeq o 0. (b) The
dimensionless fibril radius qR vs. ~g. The equilibrium radius that minimizes
Ẽ, qReq, is indicated by stars (when Ẽeq o 0) and dots (when Eeq Z 0). The
minimum and maximum fibril radii that are stable with respect to the
cholesteric (i.e. qR values such that Ẽ(qRmin) = 0, Ẽ(qRmax) = 0 and qRmin o
qReq o qRmax), are indicated by diamonds and triangles, respectively.
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have the opportunity to act on fibrils that are stable with
respect to the cholesteric (between Rmin and Rmax). Essentially
we propose that fibrillogenesis only takes place when fibrils
are thermodynamically stable, while cross-linking can freeze
(and so prevent) the subsequent slow relaxation of fibril radii
towards the minimal energy radius Req. We note that this thermo-
dynamic stability may also be of use during remodelling after
damage for these load-bearing fibrils.68

5 Conclusions

We model collagen fibrils with a double-twist director field of
molecular tilt, and identify where a fibril phase is more stable
than a cholesteric phase. The stability, dimensionless radius
qR, and surface twist of the fibrils c(qR) are controlled by two
dimensionless parameters, the ratio of surface tension to the
chiral strength (~g � g/K22q) and the ratio of saddle-splay to
twist elastic constants (k̃24 � k24/K22). The fibril phase is the
equilibrium state with respect to the cholesteric phase only
when the surface tension is small compared to the chiral
strength. Within this limit, the fibril phase can access a wide
range of equilibrium configurations (Req, c(Req)). Surface twist
of collagen fibrils is a key property of our approach. Current
experimental observations are consistent with our equilibrium
picture, and indicate that controlled equilibrium polymorphism
of collagen fibrils may be significant biologically. We suggest
that corneal collagen fibrils are formed close to the fibril-
cholesteric stability boundary, with large surface twists, in order
to achieve a narrow range of fibril radii and to ensure corneal
transparency. Conversely, tendon collagen fibrils are formed
away from the stability boundary, with small surface twists,
but non-equilibrium effects are needed to explain the polydis-
persity of tendon fibril radii within individual tissues.

Our equilibrium coarse-grained double-twist model does not
include axial structure (such as D-banding), higher-order elastic
terms, or non-equilibrium effects (such as cross-linking).
Significantly, we only consider the nature of the most-stable
fibril phase with respect to a bulk cholesteric phase, and do not
consider where other possible collagen phases might occur.
Nevertheless, the qualitative success of our approach indicates
that this simplified equilibrium approach could underlie
collagen fibrillogenesis both in vitro and in vivo.
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Appendix A: dimensional reduction

The free energy per unit volume of fibril is

E ¼ 1

R2

ðR
0

dr K22r q� c0 � sin 2c
2r

� �2

þ K33
sin4 c

r

" #

� K22 þ k24ð Þ sin2 cðRÞ þ 2g
R
:

(10)

Multiplying eqn (10) by 1/(K22q2) gives the dimensionless free
energy per unit volume of fibril,

~E ¼ 1

~R2

ð ~R

0

d~r ~r 1� ~c0 � sin 2~c
2~r

 !2

þ ~K33
sin4 ~c

~r

2
4

3
5

� 1þ ~k24

� �
sin2 ~cð ~RÞ þ 2~g

~R
;

(11)

where we have defined the dimensionless quantities K̃33 �
K33/K22, k̃24 � k24/K22, ~g � g/(K22q), r̃ � qr, R̃ � qR, ~c(r̃) � c(r),
Ẽ � E/(K22q2).

Appendix B: other K33 values

In Fig. 8 we show the surface twist vs. reduced parameters k̃24

and ~g for a range of K̃33 � K33/K22 values: 10, 20, 30, and 40 for
subfigures (a–d) respectively. We note that K̃33 = 30 corresponds
to Fig. 3 but is included for ease of reference.

Appendix C: power series solution

We first assume that a convergent power-series expansion in
powers of the radius r exists. We then analytically continue this
solution to negative r, in order to simply note that if c(r) is a
solution to eqn (7) then so is �c(�r)—i.e. c is an odd function
and will only have odd terms in its power-series expansion.
(This result is independently verified by the numerically relaxed
solutions.)

To simplify our derivation we will use the dimensionless
formulation from the previous Appendix A but will drop the
tildes. Then the power series solution for c(r) with only odd
terms is of the form

cðrÞ ¼
X1
n¼0

anr
2nþ1; (12)

and satisfies

rc0ð Þ
0
¼ 1þ K33

2r
sin 2cþ 1� K33ð Þ

4r
sin 4c� cos 2c; (13)

where the trigonometric identities sin2x = 1/2(1 � cos 2x) and
sin 2x = 2 sin x cos x have been used. Taylor expanding the
trigonometric functions yields

rc0ð Þ
0
¼ 1þ K33

2r

X1
n¼0

ð�1Þn22nþ1
ð2nþ 1Þ! ðcÞ

2nþ1

þ 1� K33ð Þ
4r

X1
n¼0

ð�1Þn42nþ1
ð2nþ 1Þ! ðcÞ

2nþ1

� 1þ
X1
l¼1

ð�1Þl22l
ð2lÞ! ðcÞ

2l

 !
:

(14)
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The general form of cn in terms of ak is

cn ¼
X1
k¼0

akr
2kþ1

 !n

¼ rn
X1
k¼0

X
j1þj2þ���þjn¼k

aj1aj2 . . . ajn

 !
r2k;

(15)

where j1, j2, . . ., jn Z 0 are integer indices and we have used the
Cauchy product

X1
n¼0

anx
n
X1
m¼0

bmx
m ¼

X1
k¼0

Xk
l¼0

albk�lx
k: (16)

Using this we obtain

X1
n¼0
ð2nþ 1Þ2anr2n ¼

X1
n¼0

cnr
2n
X1
k¼0

p2nþ1;kr
2k

þ
X1
l¼1

dlr
2l
X1
k¼0

p2n;kr
2k;

(17)

where we have defined

cn ¼
ð�1Þn22n
ð2nþ 1Þ! K33 þ 22n 1� K33ð Þ

� �
; (18)

dl ¼
ð�1Þl22l
ð2lÞ! ; (19)

Fig. 8 Calculated fibril surface twist c(qReq) � cReq
for different values of K̃33 � K33/K22. As K33/K22 increases, the surface twist values tend to decrease in

size for a given ~g and k̃24. In (a) the double-twist model predicts the existence of fibrils with very large surface twist, C0.52 rad, which are stable with
respect to the cholesteric phase. The surface twist values shown in b and c predict a wide range of equilibrium surface twist values (dependent on
parameter values), consistent with experimental observations. The 0.1 rad contour, labeled ctendon

Req
, is a typical surface twist value of in vivo tendon fibrils.

Similarly, the 0.31 rad contour, labeled ccornea
Req

, is a typical surface twist value of in vivo corneal fibrils. The surface twist of both fibril types is captured for

each K33/K22 value shown, but as seen in d, as K33/K22 \ 40, the 0.31 rad (cornea) surface twist line lies entirely within the metastable regime. The gray
areas in (a–d) correspond to parameter space regions for which no stable or meta-stable double-twist configurations are found. Note that k̃24 � k24/K22,
~g � g/(K22q), and K̃33 � K33/K22.
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pn;k ¼
X

j1þj2þ���þjn¼k
aj1aj2 . . . ajn : (20)

Using eqn (16), we re-write eqn (17)

X1
n¼0
ð2nþ 1Þ2anr2n ¼

X1
n¼0

Xn
j¼0

cn�jp2ðn�jÞþ1; jr
2n

þ
X1
n¼0

Xn�1
k¼0

dn�kp2ðn�kÞ;kr
2n:

(21)

We can determine each an recursively from the eqn (21). We
find that a0 = c0

0 is arbitrary. For n Z 1, eqn (21) can be
rearranged to give

an ¼

P1
j¼0

cn�jp2ðn�jÞþ1; j þ
Pn�1
k¼0

dn�kp2ðn�kÞ;k

2nþ 1ð Þ2�1
h i ; n � 1 (22)

Since p2(n�j)+1,j, p2(n�k),k depend on all lower coefficients
a0,. . .,an�1, calculating c(r) to high order in r becomes increas-
ingly difficult and is impractical for a broad range of para-
meters. Nevertheless, we can use the leading cubic term as a
starting point for our numerical relaxation approach:

cðrÞ ¼ c0

0
rþ 3K33 � 4ð Þc0

0 3 � 3c0

0 2

12
r3 þO r5

� 	
(23)
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