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Generating synthetic aging 
trajectories with a weighted 
network model using 
cross‑sectional data
Spencer Farrell1*, Arnold Mitnitski2, Kenneth Rockwood2 & Andrew Rutenberg1*

We develop a computational model of human aging that generates individual health trajectories with 
a set of observed health attributes. Our model consists of a network of interacting health attributes 
that stochastically damage with age to form health deficits, leading to eventual mortality. We train 
and test the model for two different cross-sectional observational aging studies that include simple 
binarized clinical indicators of health. In both studies, we find that cohorts of simulated individuals 
generated from the model resemble the observed cross-sectional data in both health characteristics 
and mortality. We can generate large numbers of synthetic individual aging trajectories with our 
weighted network model. Predicted average health trajectories and survival probabilities agree well 
with the observed data.

Human aging is a complex process of stochastic accumulation of damage1 that occurs at many organismal scales 
ranging from the cellular2 to the functional. Individual health trajectories are heterogeneous, but typically worsen 
with age as damage accumulates. Heterogeneity of aging trajectories arises even in studies of clonal organisms in 
controlled laboratory conditions3,4, and is an intrinsic part of aging. Heterogeneity in health as individuals age has 
been measured with a variety of methods, although here we focus on binary “health deficits” determined from 
routine clinical assessment and self-reported surveys5–9. Health deficits are indicators of an aging phenotype, indi-
cating disease, laboratory abnormalities, cognitive impairment, disability, or difficulty performing everyday tasks.

While any single deficit may not be a good measure of overall health, or a very informative predictor of 
mortality, averaging many binary deficits to evaluate overall health provides measures that are strongly associ-
ated with both adverse health outcomes and mortality5–10. Furthermore, such frailty indices (FIs) are robust 
to missing or heterogeneous data8. Using “high-level” health-deficits provides a measure of health that is both 
conveniently assessed and reflecting the functional aspects of healthy living that are important to the individual11. 
Such an FI also contains information about health that is not found in recent epigenetic measures based on 
DNA-methylation12.

While the FI has been shown to be broadly predictive of both mortality13 and of the accumulation of indi-
vidual deficits9,14, it does not distinguish the health trajectories of two individuals with the same FI even if they 
have distinct sets of accumulated deficits. Capturing the heterogeneity in health trajectories requires modelling 
the full high-dimensional set of health variables. We develop a model to generate populations of synthetic health 
trajectories, which capture this heterogeneity.

However, the development of models of aging is complicated by the data currently available. Large observa-
tional studies ( 104 + individuals) with linked mortality are often cross-sectional (measuring most variables only 
when individuals enter a study), have short censored survival outcomes, and have a lot of missing data. This 
has made developing realistic models of human aging difficult. Nevertheless, such models would be useful to 
generate model individual health trajectories during aging from birth, or from baseline data of actual individu-
als. Encouragingly, a model capable of generating general health trajectories during aging using cross-sectional 
data has recently been developed15—though it did not consider individual survival.

Here, we develop an intuitive model that can be fit with cross-sectional data with censored survival informa-
tion to generate individual aging trajectories that include both health and survival. Our model is adapted from 
previous work modeling human aging with stochastic dynamics on a complex network16–18, which was shown to 
capture population level aging phenomena, such as Gompertz’ law of mortality19. This model was based on the 
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intuitive assumption that having one health deficit increases the risk of acquiring another one, and so deficits 
can be thought of as interacting in a network, in which connections establish pairwise associations20. Nodes in 
this older model represented generic/abstract deficits and corresponded to no specific physiological systems in 
particular. Nevertheless, their collective behaviour captured key aspects of aging. This “generic” network model 
(GNM) used many nodes ( N = 104 ) to abstractly represent the many interacting physiological systems in the 
human body, had simple interactions between nodes, and needed no age-dependent programming of damage.

Our new “weighted” network model (WNM) is parameterized so that each node represents an actual health 
attribute (potential health deficit) corresponding to observational aging data. We recognize that we will never be 
able to incorporate all possible health attributes as nodes in our network or to describe exact biological mecha-
nisms. For this reason, we use more complex weighted interactions between observed nodes that can capture the 
effective behaviour of underlying and/or unobserved biological mechanisms. This new WNM can be considered 
as a coarse-grained adaptation of our previous GNM, with far fewer nodes.

We separately fit our WNM with cross-sectional observational data from the Canadian Study of Health and 
Aging (CSHA)21 and the National Health and Nutrition Examination Survey (NHANES)22. These human aging 
studies consist of 8547 and 9504 individuals, age ranges of 65–99 and 20–85 years, in which mortality data are 
available for at most 6 or 10 years past study entry, respectively. Deficits in these datasets are binary indicators of 
health issues and integrate information across physiological systems, such as difficulty performing activities of 
daily living (ADLs) or more complex instrumental activities of daily living (IADLs). We estimate parameters for 
each study by maximizing the log-likelihood for our model to recover the observations, where the likelihood is 
estimated from simulations of the stochastic model. By validating our model on a separate test set, we demon-
strate that our model represents real aspects of aging, and is not overfitting to the training data.

We find that our synthetic individuals generated with our model capture the health outcomes and survival of 
observed data with a number of different measures. Indeed, rather than focusing on achieving optimal predic-
tive performance on any one particular task, our goal was to obtain a robust model that can generate realistic 
trajectories for multiple health attributes at once for many individuals from either actual or synthetic baseline 
health status. Nevertheless, our model cannot overcome the intrinsic limitations of cross-sectional data—for 
example, the accuracy of health trajectories will only be assessed by comparing simulated cohorts of individuals 
to longitudinal data of the observed cohort.

Results
Health trajectories.  Starting from an individual with a set of N potential binary deficits at a baseline age 
t0 , {di(t0)}Ni=1 , our model (see “Model” section below, trained on the CSHA dataset) generates deficit trajecto-
ries {di(t)} describing health for synthetic individuals for each age t > t0 until mortality. (Here di = 1 indicates 
a deficit for the ith aspect of individual health, while di = 0 indicates no deficit. We generally refer to a set of 
potential health deficits {di} as health attributes). We want to test whether these synthetic individuals age with 
the same properties as do real individuals in the observed data. Without longitudinal data, we cannot test these 
individual trajectories directly. However, we can use the population average of the observed cross-sectional data 
and compare with the average population trajectory predicted from our model. If the study population was ran-
domly sampled with no biases, we expect these average trajectories to agree.

Given baseline age and N = 10 selected deficits for individuals from the test data aged 65–70 that survive 
past age 70, and individuals aged 75–80 that survive past age 80, we use our model to forecast their health tra-
jectories. These simulated trajectories allow us to the compute the full joint distribution of health states vs age 
for these simulated individuals, p̂({di}|t) . Since this distribution is 10-dimensional, with 210 = 1024 distinct 
age-dependent probabilities, we plot only the prevalences of each deficit (by marginalizing the distribution). We 
compare the average of these individual trajectories until death to the deficit prevalence from the observed cross-
sectional CSHA data for ages 70+ and 80+. In Fig. 1 we show health trajectories using prevalence at age t of the 
ith deficit, p̂(di = 1|t) , for the model (blue solid lines for 65–70 and green dashed lines for 75–80) together with 
the observed CSHA prevalence (red squares). We see excellent agreement for nearly 30 years for most deficits. 
This shows that the model is able to project a population forward in time while correctly identifying changes in 
deficit prevalence. We also show the average predicted trajectories with an alternative set of 10 deficits in Sup-
plemental Figure S4 and using the NHANES data in Figure S5.

A similar prediction is done for the prevalence of pair combinations of deficits, i.e. comorbidities. We pre-
dict the probability of having two specific deficits p̂(di = 1, dj = 1|t) vs age in our model, and compare with 
the observed data. This is shown in Fig. 2 and in Supplemental Figure S6, and also shows excellent agreement 
between the model and the CSHA data for over 30 years. This indicates that our model is accurately capturing 
the association between pairs of deficits through network interactions. Notably, pairwise combinations in the 
model often perform better than corresponding prevalences—see for example (1, 7) in Fig. 2—confirming that 
pairwise combinations (together with higher order combinations, not shown here) are non-trivial predictions 
of the model.

We can represent overall individual health with the well-established “Frailty Index” (FI), an index that uses 
the proportion of deficits, F =

∑N
i=1 di/N , as a predictor of health and mortality5,8. In Supplemental Figure S7 

we show that the heterogeneity in health as individuals age, as characterized by distributions of FI at different 
ages, is similar to the observed CSHA data.

We are not limited to modelling known individuals. In Supplemental Figure S8 we show that the population 
prevalences of synthetic individuals starting from birth with zero damage also agree with the observed CSHA 
prevalences. Indeed, we can generate trajectories and survival curves for any baseline age and individual set 
of deficits. Using synthetic populations, we can also generate trajectories starting from any age with partially 
observed sets of deficits with missing values.
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Figure 3 shows FI trajectories starting from the known baseline data (red circle) for six synthetic individu-
als with specific deficits. Horizontally, we vary baseline age with 65, 75, and 85 along the columns. Vertically, 
we vary baseline deficits, with bottom individuals having a higher initial FI by having two additional deficits. 
Individual trajectories are conditioned on dying at their median survival probability (dashed black lines), seen 
from the individual black survival curves. Shaded regions show a distribution of FI trajectories. The trajectories 
behave reasonably. Individuals with more baseline deficits accumulate additional deficits faster and die sooner. 
Individuals starting at older ages also have a more rapid increase in number of deficits and have a shorter time 
to death. Note that these trajectories exhibit FIs larger than the typically observed maximum of 0.79,23,24, which 
is due to the small number of potential deficits used here (only 10) compared to typical studies (with 30− 40 
potential deficits).

Individual deficit predictions.  Since our training and test data sets have similar distribution of health 
states (e.g. deficit prevalence), the good test performances in Figs. 1 and  2 do not rule out overfitting to the 
training set, because the model was only assessed against the distribution of health states for the training and 
test data. To assess overfitting, we need to consider predictions of individual health states—i.e. observed deficits 
for specific individuals. We first verify that there is only a ∼ 20% overlap between the observed health states of 
individuals in the training and test data sets, see Supplemental Figure S9. (We also confirm that using only one 

Figure 1.   Average predicted trajectories of ten deficit prevalences (as indicated by the subplot titles, numbered 
0 to 9) vs. age for individuals from the test data aged 65–70 surviving past 70 (solid blue lines) and aged 75–80 
surviving past 80 (dashed green lines). Observed CSHA prevalence is shown in red squares; standard errors are 
smaller than the point size.

Figure 2.   Average predicted trajectories of pairwise deficit prevalence vs. age for individuals from the test data 
aged 65–70 surviving past 70 (blue solid lines) and aged 75–80 surviving past 80 (dashed green lines). Subplot 
titles indicate the two deficits included in the pairwise prevalence, with numbers corresponding to titles in 
Fig. 1. Only odd numbered pairs are shown here; other pairs are shown in Supplemental Figure S6. CSHA data 
is shown by red squares; errorbars represent standard errors of the pairwise prevalence.
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or two attributes leads to a � 90% overlap. Note that this overlap is not due to the same individuals being present 
in the training and test sets, but due to the discrete nature of the binary deficits.).

We test the model’s ability to capture the age-dependent joint distribution of deficits p({di}|t) by evaluating 
its performance in predicting “left out” deficits from individuals in the test set at the same age, i.e. performing 
missing data imputation by estimating p({dj}missing|{di}observed, t) . Given a known age t(m) and known health 
attributes {di}(m) for an individual m from the test set, we simulate from zero damage at birth and sample from 
the simulated individuals at age t(m) that have the health attributes {di �=j}

N
i=1 to estimate the probability of having 

the left out deficit, p̂(dj = 1|{di �=j}
(m), t(m)) . We compare this probability with the actual value of the left out 

health attributes d(m)
j  for this individual at the same age. This is a binary classification, and can be quantified by 

the area under a ROC curve—the AUC.
Figure 4 shows the AUC for each left-out deficit. This is equal to the probability that given two individuals with 

and without the deficit, the model correctly predicts a higher probability of having the deficit for the individual 
with the deficit than without. The full test set is shown as a solid blue line, while blue circles show the AUC strati-
fied by age. For all deficits, we see AUC values well above 0.5 for the test data, meaning that our model is making 

Figure 3.   The purple shading indicates the distribution of Frailty Index trajectories vs age for simulated 
individuals starting from the red circle at a specific age, with the indicated starting set of deficits. The scale-
bar at right indicates the probability that a simulated trajectory falls within a particular colour. In the top 
row individuals only start with one deficit. In the bottom row individuals start with three deficits. In the 
three columns, individuals start at age 65, 75, or 85. Individual survival curves are shown as black lines, and 
trajectories are conditioned on dying at the median death age (indicated with dashed lines).

Figure 4.   AUC for predicting the value of individual left-out deficits for test (blue circles and lines) and 
training (orange squares and lines) data. The points show the AUC when stratifying by age. Errorbars indicate 
95% confidence intervals. The solid line shows the result for all ages. The baseline AUC is 0.5 for random 
(uninformative) predictions.
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informative predictions and not just overfitting the training data. Orange squares and lines show similar values 
for the AUC of the training data, which is further confirmation that any overfitting is minimal.

Obtaining essentially the same AUC when stratifying by age in Fig. 4 demonstrates that the model is predict-
ing as well even when we eliminate age as a factor. This indicates that the model is utilizing the network interac-
tions between observed deficits to make non-trivial individual predictions, and not just using e.g. increasing 
prevalence with age.

Survival.  We can also model individual mortality. We take baseline data from the test set for an individual m at 
age t(m) and health attributes {di}(m) , and simulate from this age until mortality. This allows us to estimate their sur-
vival function ̂S(a|t(m), {di}

(m)) , i.e. the individual’s probability of surviving to an age a > t(m) . We average these to 
get a population average survival function over M individuals, �Ŝ(a|t(m), {di}

(m))�M = 1
M

∑

m Ŝ(a|t(m), {di}
(m)) . 

We show the comparison of this to a Kaplan–Meier estimate25 of the population survival function from the 
observed CSHA test data in Fig. 5A, with our model shown in blue and the observational test data in red. We 
observe good agreement, and also find that model predictions correctly drop to zero survival by age 120.

Since the training and test distributions are similar, a population measure of mortality does not tell us whether 
the model is overfitting—only whether the model is able to capture the population trends in mortality. Accord-
ingly, we validate individual survival on the test set with a C-index26 to measure how well the model discriminates 
individuals in terms of risk of mortality. The C-index is the probability that the model correctly predicts which 
of a pair of individuals lives longer, so a C-index above 0.5 is making predictions better than random.

Since our model includes potentially complex time-dependent effects, where survival curves can 
potentially cross, we use a more general age-dependent C-index27. We obtain this by comparing the 
rank ordering between survival probability and known survival age while including censoring, so 
Ctd = Pr(Ŝ(a(m1)|t(m1), {di}

(m1)) < Ŝ(a(m1)|t(m2), {di}
(m2))|a(m1) < a(m2), c(m1) = 0)27.

Figure 5B shows this age-dependent C-index for both on the full test set (solid blue line) and stratified by 
age (blue circles). The C-index shows that the model discriminates well on the full test when the difference in 
ages between individuals can be used in the discrimination. When we stratify by age to eliminate this effect, we 
nevertheless see that the model still discriminates well based on just these ten deficits alone, indicating that the 
model captures an increased risk of mortality from specific deficits. In particular, our model performs better 
than a standard Cox-proportional hazards28 model using the Frailty Index and age (green squares and line). We 
note that stratified values are noisy due to the small number of individuals per age bin, especially at higher ages.

In Supplemental Figure S10A we show similar results for the C-Index for both training and test sets, which 
also indicates a lack of overfitting. Similarly, Figure S10B shows an R2 measure constructed from Brier Scores29, 
a measure of how well predicted and observed survival curves match, that behaves similarly for training and 
test data. Furthermore, Figure S10C shows the ROC AUC for predicting binary dead/alive on the train/test sets 
within a specific window of time, finding a similar AUC of approximately for 1–5 year mortality windows. For 
all of these, we find similar behavior between the training and test sets, indicating a lack of overfitting. This is 
also seen for survival predictions for the alternative set of deficits used in Figure S4, as shown in Figure S11 and 
for survival predictions for the NHANES dataset, as shown in Figure S12.

Discussion
Our weighted network model (WNM) is trained with cross-sectional data, generates cohorts of synthetic indi-
viduals that resemble the observational data, and can forecast the future survival of real individuals from their 
baseline health and age. We have validated the WNM model through a variety of measures. Synthetic individu-
als age with trajectories that have approximately the same prevalence of deficits and comorbidities as in the 

Figure 5.   (A) Model population average survival function (blue) and CSHA Kaplan-Meier population survival 
function (red). Error in the model and data are shown as shaded regions for a 95% confidence interval. (B) 
Survival C-Index stratified by age (blue circles) and unstratified (solid blue line). Green squares and lines show 
the age-dependent Ctd for a Cox-proportional hazards model with age and FI. Errorbars on points and grey 
region around the unstratified line show 95% confidence intervals.
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observed data. The average trajectories predicted by the model agree very well for nearly 30 years. Given a set 
of known deficits, the model can predict the probability of having a missing or unknown deficit at the same age, 
demonstrating the models ability to capture the age-dependent joint distribution of the deficits. Estimated sur-
vival curves also agree with observed population survival, are predictive of mortality, and discriminate between 
individuals.

Our model has a large number (188) parameters while our health data has only N = 10 binary attributes. One 
concern with having at most 2N = 1024 discrete health states is that there could be significant overlap between 
the test and training sets. Nevertheless, we showed in Supplemental Figure S9, that a significant fraction of the 
health states from the test set are not in the training set. Using this (non-overlapping) test set we have shown that 
our model does not substantially overfit and can make predictions on unseen test individuals.

We emphasize that our model is not just fitting the prevalence of the N = 10 deficits, but is fit to the full ten-
dimensional age-dependent joint distribution p({di}|t) which has 1024 distinct states. A full model of this distri-
bution would require many more than 1024 parameters. Our network model substantially reduces the number of 
parameters required, by only directly fitting pairwise interactions and getting effective higher order interactions 
through the local damage term in our model ( fi ). While a minimal model using our network approach using 
linear or simple exponential forms for the functions describing rates in our model would have 144 parameters, 
we have increased this to 188 by using third order power series. This has offered increased flexibility to the model 
and also improves performance.

Our model generates accurate projections of the average health trajectories of groups of individuals. Taking 
a group of individuals and simulating them to their deaths, we find the average trajectory generally agrees with 
the average population data, which shows that model averaged trajectories are quite accurate and are consistent 
with the assumption that the study population is a random (representative) sample. Note that this does not mean 
that we can overcome the intrinsic limitations of cross-sectional data, and to validate the accuracy of individual 
predicted trajectories we would need longitudinal data.

Our model works when separately trained and tested on CSHA and NHANES cross-sectional datasets. This 
success indicates that our approach should work more broadly with comparable cross-sectional data from other 
datasets. Nevertheless, we find that performance is somewhat worse on the NHANES dataset. This may be due 
to the presence of many missing values in the NHANES dataset, the increased age range of the NHANES dataset 
(20–85 years for NHANES vs 65–99 for CSHA), or perhaps differing biases in the cohorts studied.

When we predict health trajectories until very old ages (80–90 years old), our model tends to estimate slightly 
higher prevalence than are observed in cross-sectional data (see Figs. 1, S4, and S5), particularly in the NHANES 
data where baseline measurements are taken further away from the actual age of death than in the CSHA data. 
One possible explanation for this is that there is a compromise in the model between fitting these trajectories 
and fitting survival, and the model is attempting to amend this compromise by fitting trajectories well for early 
ages, then rapidly damaging deficits to induce mortality in individuals to obtain the correct survival predictions. 
Another possibility is that the damage rates need to rapidly increase from ages 60 to 90, but then slowly taper 
off of this increase for these older individuals. Fixing this would require more flexible damage rate functions 
capable of tapering off for very old individuals.

Alternatively, our model could be describing a real acceleration of health decline before death that is not 
captured in the observational cross-sectional data due the lack of health measurements near death. In other 
words, these cross-sectional studies could be biased by excluding subjects near death, and our model is correctly 
including a large increase in the rate of damage near death. Indeed, in longitudinal studies a rapidly rising FI has 
been shown to identify individuals with a high risk of death within 1 year30—this is called “terminal decline”31. 
Using such longitudinal data (see below) would allow us to better predict and to better test generated health 
trajectories for specific individuals, including health near death.

Individual survival is assessed with the C-index26. The C-index evaluates the model’s ability to predict the 
relative risk of death for pairs of individuals. A C-index of 1 represents perfect predictions, but in practice 
intrinsic variability of individual mortality will limit the C-index below that in an age and health-dependent 
way. The availability of individual data will further limit the C-index below that—but generally above 0.5, for an 
uninformed random guess. We observe C-index values of around 0.6 when stratifying by age, which means that 
just by using ten binary deficits, we can predict which of two individuals of the same age lives longer with 60% 
accuracy. Our model achieves better results than a simple Cox-proportional hazards model28 using the Frailty 
Index, but a larger number of health deficits and more data would further improve our model’s predictions.

Our previous generic network model (GNM) captured population level aging behaviour like Gompertz’ law 
of mortality and the average increase in the Frailty Index (health decline) vs age17,18, however the nodes did not 
correspond to any particular health attribute (i.e. they were generic). Adding more complexity to damage/mortal-
ity rates with more flexible functional forms, node-dependent fitting parameters, and a weighted interaction net-
work, we have here been able to represent individual health attributes from observational aging data with specific 
nodes in our WNM. This has allowed us to model individual health trajectories, including individual survival.

The choice of which deficits to use with our model is arbitrary, the only assumptions we require are that they 
are binary and not reversible. We do not need the deficits to have strong correlations between them or be good 
predictors of mortality to capture the sample trends in health trajectories (Figs. 1 and  2) or overall survival 
function (Figure 5A), since these do not show individual predictions but instead captures how well the model 
overall captures the trends seen in the data. However, the quality of individual predictions for left-out deficits and 
survival (Figs. 4 and  5B) do depend on the deficits chosen, because these are predictions for specific individuals. 
For independent deficits that are absolutely uninformative of mortality, we would expect AUCs of 0.5 for left-out 
deficit prediction and a C-index of 0.5 for the mortality prediction.
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The only health variables we have included are health deficits that accumulate through damage. Other static 
or non damage-accumulation variables are often considered in aging studies as well, such as sex32–34, and envi-
ronmental variables like socioeconomic status35, or lifestyle. Variables that do not change by damage accumula-
tion but still interact with health deficits can be easily added to the model as network nodes with static values. 
In this way they could naturally interact with the damage-accumulation health attributes. Similarly, individual 
non-damage variables that could be deliberately modified—such as physical activity levels36,37—could be added 
as nodes with explicit time-dependent values that depend on the individual.

There has been significant work inferring biological networks, using a variety of approaches38–41 and at differ-
ent scales42. In the context of human frailty, previous work has created a network representation of health attrib-
utes with measures of association or correlation18,43,44. Different methods result in different networks, and thus it 
has not been clear what underlying association between the deficits a given network represents. Equivalently, it 
has not been clear how to test a given network representation. In the Supplemental section on Parameter Robust-
ness, we explore the “robustness” of both our network parameters and predictions by sampling an ensemble of 
parameters around the maximum likelihood estimate45. Supplemental Figure S1 shows that significant devia-
tions from the maximum likelihood parameters still leads to relatively accurate fits of the data—i.e. we obtain 
robust predictions. However, when we optimized the model several times with different random seeds we show 
in Figure S2 that we find significantly different network parameterizations each time. Figure S13D shows that 
even the sign of individual connections is not robust. We conclude that while the model behavior is robust, the 
network structures themselves are not robustly predicted by the available data.

This lack of robustness of the network is not surprising. Due to the complex interactions between many 
parameters in our model, we expect that many network parameters are “sloppy”46. This would lead to robust 
collective behavior of the system with many different combinations of parameters—i.e. many different networks 
that are consistent with the observed data. Nevertheless, we show in Supplemental Figure S3 that how damage 
propagates from node to node of the network does have some degree of robustness. We show average damage 
rates Ŵi←j(t) = �Ŵ+

i (t, di = 0, dj = 1, {dl})�p({dl}|t,di=0,dj=1) of the ith node conditional on prior damage of the 
jth node. This robustness shows that the behavior of our weighted network model (WNM) is robust despite some 
sloppiness of individual parameters. Indeed, this robust behavior seems necessary to perform well in predicting 
deficit prevalence and mortality.

Our network model imposes casual mechanisms within the simulation—it assumes that there is a direction to 
the network weights, and attempts to infer those weights within the assumptions of the model. Since we do not 
have adequate data to be able to infer true casual relations, these directed links are simply chosen for accurate 
prediction. A directed link in our model is just defined in terms of prediction: a particular directed connection 
between two variables is included if it improves prediction accuracy. Similarly, our network connections are 
not simply correlations between the variables (for those, see Figure S13), but are chosen to improve prediction.

In recent models of disease progression or aging either the mortality is not considered15, or the models 
require longitudinal data47, or both48–50. Structurally, our model differs from others by using an explicit network 
describing pairwise interactions, and it uses this network to generate stochastic changes to their health state 
as they age until death—rather than capturing the dynamics with unobserved latent variables that are harder 
to interpret. Using discrete health states within our model allows us to simply compare with observed health 
states using maximum likelihood methods, and allows our success while using only cross-sectional data. That 
said, our approach could be extended to use longitudinal data for training—and we would expect this to further 
improve model behavior.

The interpretability of our model structure makes it straightforward to adapt our model to new applications. 
We can easily generate synthetic tracked health trajectories, or forecast the future trajectories of individuals from 
specified health states. This means that our model can generate many different stochastic realizations for the 
same individual after baseline, and can show how differences in possible health trajectories lead to differences in 
mortality. Another application of our computational approach that would be facilitated by our model structure is 
to manipulate model individuals to perform “health interventions” on specific observed nodes or sets of nodes. 
We could then observe the affect of general interventions on health trajectories and mortality. These predictions 
could then be tested with longitudinal data. This is left for future work.

Methods
Model structure.  In previous work, we developed a generic network model (GNM)17,18 to study how dam-
age propagation in a network can lead to similar behaviour as observed in aging, in terms of population health 
and mortality. In this work we expand upon and generalize the GNM to be able to fit the model to individuals 
with specific observed deficits with a maximum likelihood approach. This allows us to generate synthetic indi-
viduals from the model, which age with similar properties as the cohort used to fit the model.

We consider a network of N nodes representing binary health attributes. Each node i = 1, ...,N can be in state 
di = 0 for undamaged (healthy) or di = 1 damaged (deficit). Nodes in the network undergo stochastic damage 
transitions ( 0 → 1 ) as an individual ages. These transitions occur with rates that depend on the local damage of 
neighbouring nodes. We call this local damage the “local frailty”, fi.

In the GNM, we measured the local damage around a specific node as the proportion of damaged neighbours, 
fi =

1
ki

∑N
j=1 aijdj , where aij is the binary-valued adjacency matrix of an undirected network and ki =

∑

j aij is 
the node degree. Damage transitions ( 0 → 1 ) between states occurred with rates that depend exponentially on 
the proportion of damaged neighbours, described by a function Ŵ+(fi) = Ŵ+

0 exp (γ+fi) with tunable parameters 
γ+ and Ŵ+

0  . Here we use superscript “ + ” to denote that this is a damage rate, and correspondingly use “−” to 
denote repair rates. The baseline rate Ŵ+

0  controls the damage rate when fi = 0 , and γ+ controls how strongly 
the rate increases with increasing fi . Similar repair transitions were also included (with separate parameters γ− 
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and Ŵ−
0  ), but were found to be negligible. The parameters γ+ and Ŵ+

0  were identical for each node and chosen to 
fit population mortality rates (Gompertz’ law) and overall health decline (average Frailty Index). For the GNM 
studies we used N = 104 nodes17,18.

In this work, we generalize the GNM to allow the model to represent specific health attributes measured 
in observed health data as nodes in the network. We generalize the original binary and undirected network 
to a weighted and directed network, described by a continuous-valued adjacency matrix of weights, wij . These 
weights represent the strength of connections between pairs of nodes. We call this a weighted network model 
(WNM). We use far fewer than 104 nodes in this WNM network, but account for the contribution of these missing 
nodes by introducing a time-dependent function µi(t) to the local damage of each node, fi . This function µi(t) 
represents the average contribution to the local damage by the dynamics of the unobserved nodes. This average 
local damage contribution µi(t) for each node i is implemented as a power series in terms of t with coefficients 
{µi n}

i=N ,n=nf
i=1,n=0  , where nf  is a hyperparameter for the number of terms used in the power series. This means our 

new measure of local damage for the ith node is a weighted sum over all of the nodes of the network, with the 
additional contribution from the µi(t) term,

Powers in power series are indexed by n, individual deficits or rates are indexed by i, and sums over nodes 
in the network are indexed by j. We use this convention of indexing throughout the methods. The function 
φ(x) = max (x, 0) is a “rectifier” or “hinge” function51 that clips negative values to zero, resulting in a continu-
ous non-negative function. This can allow strong non-linear behaviour by allowing the function to be able to 
effectively “turn on” at older ages. The network weights {wij}

N
i,j=1 and power series coefficients {µi n}

i=N ,n=nf
i=1,n=0  are 

included as fitting parameters of the model. The coefficients {µi n} are constrained so that µi(t) increases mono-
tonically with age, details are in the Supplemental Information (SI).

The exponential damage rates of the GNM have been replaced by more general power-series in terms of fi , 
with node-dependent coefficients to allow each node to have a different damage rate. This way, specific nodes in 
the network are able to represent the distinct behaviour for specific deficits in the observed data (in contrast to 
the generic network model). This more general damage rate for node i is given by,

This function describes the damage transition rate from 0 to 1 for node i. The power series coefficients 
{γ+

i n}
i=N ,n=n+
i=1,n=0  are fitting parameters of the model and n+ is a hyperparameter that determines the highest-order 

in the power series. The coefficients {γ+
i n} are constrained so that the rate increases monotonically with fi.

Mortality occurs as a separate process with a rate of death that follows the same form with a power series,

This mortality rate is equivalent to having a single node that corresponds to mortality, and death occurs when 
it damages (in contrast to the two nodes that were used in the GNM16,17). The measure of local damage x that 
controls mortality is analogous to the local damage fi for damage rates, and depends on each deficit linearly in a 
weighted sum. Additionally, it includes an age-dependent deficit-independent function represented as a power 
series (analogous to µi(t) ). This mortality rate uses fitting parameters {αn}

nD1
n=0 , {βj}

N
j=1 , and {ηn}

nD2
n=0 as well as 

nD1 , nD2 as hyperparameters determining the number of terms in the power series. The coefficients in both ŴD 
and x are constrained so that they increase monotonically in x and t, respectively.

In total the model has Ntot = N(N + nf + n+ + 1)+ nD1 + nD2 + 2 fitting parameters. We restrict parameter 
values to ensure that fi , Ŵ+

i  , ŴD , and x are all monotonically increasing functions of age. Details of the requisite 
parameter bounds are in the Supplemental Information (SI). Despite the large number of parameters, we have 
many more individual observations. We also carefully test predictions for a test population that has small overlap 
of observed states with our training population (see Supplemental Figure S9). We find no evidence of overfitting.

The model is stochastically simulated by assuming the transition rates describe exponentially distributed 
waiting times between transitions, and then using an exact event-driven stochastic simulation algorithm (SSA/
Kinetic Monte Carlo)52. Details of the stochastic simulation are in the SI. For one run of the model until death, 
i.e. for each synthetic individual, the model outputs death age tD and all node trajectories, {di(t)}i=N

i=1  for all t 
between the initial age and mortality. Fully synthetic individuals are started at t = 0 with all di(t = 0) = 0 , while 

(1)

fi(t, {dj}) = φ

(

N
∑

j=1

wijdj + µi(t)
)

,

where µi(t) =

nf
∑

n=0

µi nt
n.

(2)Ŵ+
i (t, {dj}) = φ

(

n+
∑

n=0

γ+
i n fi(t, {dj})

n
)

.

(3)ŴD(t, {dj}) = φ

(

nD1
∑

n=0

αnx(t, {dj})
n
)

,

(4)x(t, {dj}) = φ

(

N
∑

j=1

βjdj +

nD2
∑

n=0

ηnt
n
)

.
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predicted trajectories for observed individuals are initialized at some t0 with the completely observed health state 
at t0 . Due to the exact nature of the SSA, all transition times are precisely resolved in our model data.

Likelihood.  We calculate our likelihood using cross-sectional data. For the mth of M individuals, we have 
measurements of health attributes {di}(m) at age t(m) . Instead of death age, we have an observed survival age 
a(m) due to right censoring. This is the oldest age that an individual is known to be alive, which can be written 
a(m) ≡ min (t

(m)
D , t

(m)
c ) , where t(m)

D  is actual death age and t(m)
c  is the censoring age i.e., the age of the individual 

when they are known to be still alive due to observed health state(s) but after which their mortality is not 
recorded. We indicate censoring with a binary variable c(m) = 1 , and uncensored with c(m) = 0 . In summary, we 
consider observed cross-sectional data of the form 

{

t(m), {di}
(m), a(m), c(m)

}M

m=1
.

By simulating synthetic individuals from the model, we sample and estimate the probability 
p({di}

(m), t
(m)
D |t(m); θ) for each individual m in the data. We denote all parameters by the vector θ . For simplic-

ity we split this probability into two separate parts, representing mortality and health respectively:

For uncensored individuals, we can calculate their likelihood by using their known death age using Eq. (5). 
For censored individuals, we also need to integrate the mortality term over all possible death ages above the 
censoring age,

which is the probability of surviving to at least age a. Then we can calculate the full log-likelihood,

where the last term is added for censored individuals.
For an individual with missing data that does not have the full N health attributes measured, we marginalize 

over the missing values implicitly by sampling all possible combinations of the missing (binary) values. This is 
done using a synthetic population that has been initialized at t = 0 with no damage. Additional details of the 
likelihood estimation from simulations are in the SI.

Observed data.  We use data from the Canadian Study of Health and Aging (CSHA)21 to develop and test 
our model. The CSHA study used stratified sampling to be a representative sample of the older Canadian popula-
tion. We use the first wave of the sample with 8547 individuals that range from ages 65–99 and death ages that 
are available within a 6 year censoring window. The mean age is 76 years with a standard deviation of 7 years, the 
individuals are 60% female, and 78% of individuals have a censored death age. The 10 binary deficits used in the 
main plots are “Walking difficulty”, “Showering difficulty”, “Phone difficulty”, “Going out difficulty”, “Shopping 
difficulty”, “Preparing meal difficulty”, “House work difficulty”, “Take medicine difficulty”, “Managing money dif-
ficulty”, and “Issues prevent normal activity”. These were chosen by selecting deficits that had large hazard ratios 
in a Cox proportional hazards analysis28, although any alternate sets of deficits can work, and an alternative set 
are shown in the SI.

We split the data into a training set of 1020 individuals and a test set of 7527 individuals. We do this such that 
dividing the training set into 5 year age bins has an approximately uniform age distribution, and the remaining 
individuals are put into the test set. This balances the training set and ensures no age is “prioritized” in the model 
training by having a much larger number of individuals.

We validate our conclusions on the National Health And Nutrition Examination Survey (NHANES)22. The 
NHANES dataset used stratified sampling to be a representative sample of the US population. We use a com-
bined sample from the 2003–2004 and 2005–2006 cohorts. The sample has 9504 individuals that range from 
ages 20− 85 with death ages that are available within a 10 year censoring window. The mean age is 51 years, with 
a standard deviation of 20 years, the individuals are 52% female, and 88% of individuals have a censored death 
age. In the same way as the CSHA data, this data is split into 2352 training individuals and 7151 test individuals.

Parameter optimization.  For each data-set (and choice of health attributes), we maximize the log-like-
lihood in Eq. (7) using particle swarm optimization53 in order to train the model and estimate the parameters 
θ̂ . Details of the parameter optimization procedure are in the SI. We use parameter bounds shown in the SI to 
impose monotonic dependence of damage rates on existing damage. We regularize the fitting as detailed in the 
SI. We choose hyperparameters n+ = 4 and nf = nD1 = nD2 = 3 . These are the number of terms in our power-
series expansions used in damage and mortality functions. The hyperparameters are hand chosen for simplic-

(5)log p({di}
(m), t

(m)
D |t(m); θ) = log p(t

(m)
D |{di}

(m), t(m); θ)+ log p({di}
(m)|t(m); θ).

(6)S(a(m)|t(m), {di}
(m); θ) =

∫ ∞

a(m)

p(a′|t(m), {di}
(m); θ)da′,

(7)

L(θ) =Luncensoredmortality + Lhealth + Lcensoredmortality

=
∑

m|c(m)=0

log p(a(m)|{di}
(m), t(m); θ)

+
∑

m

log p({di}
(m)|t(m); θ)

+
∑

m|c(m)=1

log S(a(m)|t(m), {di}
(m); θ),
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ity. These hyperparameters result in a model with N(N + 8)+ 8 parameters, where N is the number of binary 
health attributed modelled for each individual. Due to computational demands, this practically limits the size of 
N—here we take N = 10 and so have 188 parameters.

Data availability
NHANES data is available online at https​://wwwn.cdc.gov/nchs/nhane​s/defau​lt.aspx. The 2003-2004 and 2005-
2006 cohorts were used for this study. CSHA data is available upon request http://csha.ca/conta​ct_us.asp. The 
CSHA-1 cohort was used for this study.
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