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Abstract As an organism ages, its health-state is determined by a balance between the 
processes of damage and repair. Measuring these processes requires longitudinal data. We extract 
damage and repair transition rates from repeated observations of binary health attributes in mice 
and humans to explore robustness and resilience, which respectively represent resisting or recov-
ering from damage. We assess differences in robustness and resilience using changes in damage 
rates and repair rates of binary health attributes. We find a conserved decline with age in robust-
ness and resilience in mice and humans, implying that both contribute to worsening aging health 
– as assessed by the frailty index (FI). A decline in robustness, however, has a greater effect than a 
decline in resilience on the accelerated increase of the FI with age, and a greater association with 
reduced survival. We also find that deficits are damaged and repaired over a wide range of times-
cales ranging from the shortest measurement scales toward organismal lifetime timescales. We 
explore the effect of systemic interventions that have been shown to improve health, including the 
angiotensin-converting enzyme inhibitor enalapril and voluntary exercise for mice. We have also 
explored the correlations with household wealth for humans. We find that these interventions and 
factors affect both damage and repair rates, and hence robustness and resilience, in age and sex-
dependent manners.

Editor's evaluation
The key contribution of this study is to evaluate the longitudinal change in frailty indices by tracking 
both accumulation of damage and repair of deficits (damage and repair transition rates), using a 
sophisticated mathematical modeling and a translational approach that spans mice and humans. A 
second key achievement of this study is to evaluate change in frailty indices and damage and repair 
transition in interventions that improve health in mice. Collectively this advances progress in trans-
lational geroscience by providing new insight regarding how we measure biological age that can 
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aid assessment of aging-relevant interventions. The authors have provided extensive details that 
support the research frameworks presented in this report.

Introduction
As organisms age, they can be described by health states that evolve according to dynamical processes 
of damage and repair. A health state is the net result of accumulated damage and subsequent repair 
(Howlett and Rockwood, 2013). Studies of aging have mostly focused on discrete health-states 
rather than the underlying continuous dynamic processes, due the difficulty of their measurement. 
Two common approaches to measuring individual health-states, the Frailty Index (FI) (Mitnitski et al., 
2001) and the Frailty Phenotype (Fried et  al., 2001), are assembled from health state data at a 
specific age and do not separate dynamic damage and repair processes. Nevertheless, strong asso-
ciations between frailty measures and adverse health outcomes (Hoogendijk et al., 2019; Howlett 
et al., 2021) indicate that frailty affects the underlying dynamical processes. This is supported by the 
increasing rate of net accumulation of health deficits with worsening health (Mitnitski et al., 2007; 
Kojima et al., 2019).

Reduced resilience, or the decreasing ability to repair damage (or recover from stressors), is increas-
ingly seen as a key manifestation of organismal aging (Ukraintseva et al., 2021; Kirkland et al., 2016; 
Hadley et al., 2017). Resilience is often assessed by the ability to repair following an acute stressor, 
such as a heat/cold shock, viral infection, or anesthesia; or a non-specific stressor such as a change of 
the health state, typically within a short timeframe (Scheffer et al., 2018; Gijzel et al., 2019; Rector 
et al., 2021; Colón-Emeric et al., 2020; Pyrkov et al., 2021). Robustness, or an organism’s resistance 
to damage, has not been as well studied – but there is also evidence for its average decline with age 
(Arbeev et al., 2019; Kriete, 2013). Both resilience and robustness sustain organismal health during 
aging, but their relative importance and their timescales of action remain largely unexplored.

While cellular and molecular damage and dysfunction are classic ‘hallmarks’ of aging (López-Otín 
et al., 2013), damage and dysfunction at organismal scales may exhibit distinct behavior (Gems and 
de Magalhães, 2021; Howlett and Rockwood, 2013). Indeed, from a complex systems perspective 
we may expect qualitatively distinct emergent phenomena at tissue or organismal scales (Cohen et al., 
2022). However, a significant amount of organismal health data is discrete and cannot be approached 
with existing techniques used to study resilience or robustness. It is important both to study resilience 
and robustness at organismal scales and to be able to use discrete data while doing so.

To simultaneously study both resilience and robustness during aging with binarized health-deficits, 
we have here developed a novel method of analysis that uses longitudinal data from mice and humans 
to obtain summary measures of organismal damage and repair processes over time. This approach 
can be adapted to use any discrete biomarker. We apply our method to study how resilience and 
robustness evolve with age and how they differ between species, between sexes, and under different 
health interventions.

Our approach and results are limited to binarized health attributes; for our purposes damage and 
repair correspond to discrete transitions of these binarized attributes. Since our attributes are at 
the clinical or organismal scale of health, we do not consider cellular or molecular damage directly. 
Although our approach could be applied to binarized attributes at any organismal scale, we do not 
investigate whether our conclusions generalize to different sets of binarized attributes, nor do we 
consider continuous attributes.

Developing interventions to extend lifespan and healthspan is the goal of geroscience (Kennedy 
et al., 2014; Sierra, 2016; Sierra et al., 2021). While some interventions that affect aging health 
have been identified, how they differentially affect damage and repair, and their timescales of action, 
is less understood. We consider interventions in mice that have previously been shown to have a 
positive impact on frailty, the angiotensin converting enzyme (ACE) inhibitor enalapril (Keller et al., 
2019) and voluntary exercise (Bisset et al., 2022). In humans, we stratify individuals within the English 
Longitudinal Study of Aging by net household wealth (Phelps et al., 2020; Steptoe et al., 2014). 
Wealth is a socioeconomic factor associated with aging health (Zimmer et al., 2021; Niederstrasser 
et al., 2019). Understanding how various interventions affect aging health by affecting resilience and 
robustness will better enable us to fulfill the geroscience agenda.

https://doi.org/10.7554/eLife.77632
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Results
Measuring resilience and robustness with binarized data
A well-established approach to quantify health in both humans and in animal models is to count bina-
rized health deficits in an FI (Mitnitski et al., 2001; Whitehead et al., 2014). In longitudinal studies, 
the FI can be assessed at each follow-up. Here, we use longitudinal binarized health attribute data 
from mice and humans that can be used to evaluate the FI to also quantify organismal damage and 
repair processes over time. As illustrated in the schematic in Figure 1, the change in number of defi-
cits from one follow-up to the next is determined by the number of new deficits (indicating damage, 
with deficit values transitioning from 0 to 1, red arrow) minus the number of repaired deficits that 
were previously in a damaged state (with transitions of deficit values from 1 to 0, green arrow). These 
counts of damaged and repaired deficits between follow-ups represent summary measures of the 
underlying damage and repair processes. We model this process with a Bayesian Poisson model for 
counts of damaged and repaired deficits, using age-dependent damage and repair rates. For mice 
we use a joint longitudinal-survival model, which couples the damage and repair rates together with 
mortality. For humans, we use a similar model but without the survival component due to having no 
mortality data.

In our approach, damage rates are the probability of acquiring a new deficit per unit of time, and 
repair rates are the probability of repairing a deficit per unit time. These are aggregate measures 
of susceptibility to damage (lack of robustness), and ability to repair (resilience). The FI is a whole 
organism-level summary measure of health; accordingly, these aggregate damage and repair rates are 
also whole organism-level measures of robustness and resilience. Note that since these rates are per 
available deficit, repair rates may exceed damage rates while the FI is still increasing. This can occur 
due to relatively rapid repair per deficit of a small number of deficits, with a slower damage rate per 
deficit of a much larger number of undamaged attributes.

While damage of binarized health attributes with age necessarily follows from declining health, 
repair does not. However, almost all health attributes used in our mouse data have been previously 
shown to reverse either spontaneously or through extrinsic interventions such as drug treatments or 
lifestyle changes – see Supplementary file 1, with references. In Figure 5—figure supplement 4 we 

Figure 1. Extracting damage and repair from the longitudinal observation of binary health deficits. Instead of just considering the Frailty Index (FI) 
or net count of deficits at each age nt (i.e. FI multiplied by the total number N of deficits considered) as a measure of health, we separately consider 
the number of deficits damaged ‍nd

t ‍ or repaired ‍nr
t ‍ within a time interval ‍∆t‍. Time-dependent damage ‍λ

d(t)‍ and repair ‍λ
r(t)‍ rates are extracted using 

Poisson models for the counts of repaired or damaged deficits.

https://doi.org/10.7554/eLife.77632
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also show repair counts per deficit type. Nevertheless, for our data, not all deficits repair equally, and 
some rarely or never repair (‘Cataracts’, ‘Tumours’, ‘diarrhea’, and ‘vaginal/uterine/penile prolapses’).

Both resilience and robustness decline in aging populations
We first establish the trends of repair and damage rates in aging. In Figure  2, we plot the age-
dependence of the repair and damage processes in mice and humans for three mouse datasets (a) 1 
Keller et al., 2019; (b) 2 Bisset et al., 2022; and (c) 3 Schultz et al., 2020; and (d) humans from the 
ELSA dataset (Phelps et al., 2020; Steptoe et al., 2014). Humans are plotted by decade of baseline 
age at entry to the study to separate out recruitment effects. Points are binned averages from the 
data, and lines are posterior samples from the model of the rates. Posterior predictive checks show 
good model quality, seen in Figure 2—figure supplement 1 for mice (a-c) and humans (d).

In each of these datasets, there is a strong decrease in repair rates and increase in damage rates 
with age (except for damage rates in mouse dataset 2). Spearman rank correlations ‍ρ‍ for each plot 
are also shown in Figure 2, highlighting the increase or decrease in rates with age, and 95% poste-
rior credible intervals of these correlations are shown in brackets. Overall, we observe decreasing 
repair rates and increasing damage rates with age which signify decreasing resilience and robustness 
with age in both mice and humans. Decreasing repair and increasing damage both contribute to an 
increasing FI with age in mice and humans (shown in Figure 2—figure supplement 2a–d). We also 
observe higher FI scores in females versus males in both mice and humans, as reported previously 
(Kane et al., 2019; Gordon and Hubbard, 2020; Kane and Howlett, 2021).

We evaluate the contributions of damage and repair rates to survival using a joint longitudinal-
survival model in mice. In Figure 2e–g, we show that damage rates have much larger hazard ratios 
for death than repair rates. These hazard ratios are for a fixed FI, itself a strong predictor of mortality 
in mice and in people (Rockwood et  al., 2017), which shows that an increasing susceptibility to 
damage leads to larger decreases in survival than a comparable decline in resilience. Individuals 
survive longer when damage is avoided altogether, as compared to damage that is subsequently 
repaired. This intuitive result indicates that there may be lingering effects of the original damage and 
suggests that interventions that focus on robustness may be more effective than those that focus on 
resilience.

The acceleration of damage accumulation is determined by a decline in 
robustness
The plots of FI vs. age shown in Figure 2—figure supplement 2 (see also Mitnitski et al., 2001; 
Mitnitski et al., 2005; Mitnitski et al., 2012; Mitnitski et al., 2013) has a positive curvature, accel-
erating upwards near death (Stolz et al., 2021). This positive curvature is also seen in other summary 
measures such as Physiological Dysregulation (Arbeev et al., 2019). However, the origin of this curva-
ture is unknown – whether it is due to a late-life decrease in resilience or a decline in robustness.

We measure the curvature of the FI with the second time-derivative, which can be computed with 
the age-slopes of the damage and repair rates (see Materials and methods). In Figure 3, we show 
the separate contributions to this curvature, separated into terms involving damage (pink) and terms 
involving repair (green). Summing these terms, we observe the typical positive curvature that indicates 
an acceleration of damage accumulation.

We find that the decline in robustness (indicated by the damage rate terms) has the strongest 
effect on the curvature of the FI. In mice, this is seen in every dataset and is significant at the indicated 
ages (Figure 3b–d) and for humans at older ages (Figure 3e). This observed effect indicates that it is 
the increase in damage with age, rather than the decline of repair, that causes this acceleration of net 
damage accumulation. The significance of this effect is evaluated by computing the posterior distri-
bution of the difference between damage and repair terms. When at least 95% of this distribution is 
above/below zero, we take the effect to be significant. Credible intervals visualizing the difference are 
shown in Figure 3—figure supplement 1.

In Figure 2e–g we had shown that the decline in robustness has the strongest effect on survival 
in mice. Together with the results shown in Figure 3, these results highlight the important role of 
declining robustness in aging.

https://doi.org/10.7554/eLife.77632
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Figure 2. Repair rates decrease and damage rates increase with age. Repair rates vs age (top), damage rates vs age (bottom) for (a) Mouse dataset 1 
(Keller et al., 2019), (b) Mouse dataset 2 (Bisset et al., 2022), (c) Mouse dataset 3 (Schultz et al., 2020) and (d) ELSA humans (Phelps et al., 2020; 
Steptoe et al., 2014) plotted by decades of baseline age. Points in all plots represent binned averages of rates from the data with standard errors, and 
lines represent posterior samples from Bayesian models of the rates (see Methods). For each plot, the mean Spearman’s rank correlation ‍ρ‍ between the 
rate and age is indicated by the median of the posterior and a 95% posterior credible interval in parenthesis. (e-g) Posterior distributions of log hazard 
ratios of death for damage and repair rates are shown as violin plots for the mouse datasets. These hazard ratios correspond to a 1 standard deviation 
increase in the damage or repair rates. The black interval shows a 95% credible interval around the median point.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Data used in figure.

Figure supplement 1. Posterior predictive check for joint models.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.77632
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Interventions modify damage and repair rates in mice and wealth 
correlates with rates in humans
Mouse datasets 1 (Keller et  al., 2019) and 2 Bisset et  al., 2022 have additional intervention 
groups treated with either the ACE inhibitor enalapril, or voluntary aerobic exercise, respectively. 
In Figure 4—figure supplement 1a and b, we show that these interventions target both repair and 
damage processes, resulting in lower FI damage accumulation over time for the treated groups. In 

Figure supplement 1—source data 1. Data used in figure.

Figure supplement 2. Increase in Frailty Index in mice and humans.

Figure supplement 2—source data 1. Data used in figure.

Figure 2 continued

Figure 3. Frailty Index curvature is dominated by declining robustness. (a) Frailty Index curvature measures the rate of accumulation of damage. Positive 
curvature indicates an acceleration of damage accumulation, zero curvature indicates a constant accumulation of damage, and negative curvature 
indicates a decelerating accumulation of damage. Curvature is computed with the second time-derivative of the Frailty Index (Methods Equation 22). 
Terms of the curvature involving the repair rate (green) and the damage rate (pink) are separately shown. Lines represent posterior samples from our 
Bayesian models for (b) Mouse dataset 1 (Keller et al., 2019), (c) Mouse dataset 2 (Bisset et al., 2022), (d) Mouse dataset 3 (Schultz et al., 2020) 
and (e) ELSA humans (Phelps et al., 2020; Steptoe et al., 2014), plotted separately by decades of baseline age. On all plots, we indicate for which 
ages the proportion of the posterior for the difference in these terms that is negative is below 0.05; the Bayesian analogue of a p-value testing the 
contributions of robustness and resilience.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Data used in figure.

Figure supplement 1. Testing the effect of robustness, resilience, and interventions on curvature.

Figure supplement 1—source data 1. Data used in figure.

https://doi.org/10.7554/eLife.77632
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Figure 4. Interventions both increase resilience and decrease damage. (a, b) The effect of enalapril and exercise on Frailty Index curvature for mice 
for mouse datasets 1 and 2. 95% credible intervals for these curvatures are shown by errorbars around the median (point). Asterisks (*) indicate 
credible intervals for the difference between intervention and control fully exclude zero. (c ,d) Repair rates and damage rates time-slopes vs time since 
intervention for the effect of enalapril and exercise for mouse datasets 1 and 2. 95% credible intervals for these curvatures are shown by errorbars 
around the median (point). Asterisks (*) indicate credible intervals for the difference between intervention and control fully exclude zero. (e) Spearman 
rank correlation ‍ρ‍ between wealth and repair rate (green) and damage rate (pink), vs age for ELSA humans. Individuals are separated by decades of 
baseline age, and 95% credible intervals for these correlations are shown as coloured regions around the median (thick line). We restrict this plot to ages 
with at least 3 individuals.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Data used in figure.

Figure supplement 1. The effect of interventions on repair, damage, and Frailty Index in mice.

Figure supplement 1—source data 1. Data used in figure.

Figure supplement 2. Humans stratified by terciles of household wealth.

Figure supplement 2—source data 1. Data used in figure.

https://doi.org/10.7554/eLife.77632
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Figure 4a and b, we investigate the effects of these interventions on the curvature of the FI. This 
curvature is strongly reduced by exercise in mouse dataset 2, with a weaker effect for enalapril the 
credible intervals of the intervention effects are shown in Figure 3—figure supplement 1d and e. 
Notably, exercise stops the acceleration in damage accumulation in both male and female mice by 
reducing the curvature to zero.

The effect of these interventions on the repair and damage rates is seen in Figure  4c and d, 
where 95% credible intervals for the age-slopes show the rate of increase or decrease of the repair 
and damage rates as age increases. These slopes include both the change in the rate with age, and 
the effect due to increasing FI with age. Interventions affect the rate of decrease of both repair and 
damage rates with time, resulting in less cumulative damage.

As shown in Figure 4c, enalapril attenuates the rate of decrease of repair rates in both male and 
female mice, resulting in age-slopes closer to zero than for controls. Significance is evaluated by 
computing the posterior distribution of the difference between control and intervention. Significance 
is shown with asterisks (*) when at least 95% of the distribution is above/below zero. In Figure 4—
figure supplement 1 we show a significant reduction in damage rate (but not slope) for male and 
female mice with enalapril. A sex-specific effect is seen for voluntary exercise. For female mice, volun-
tary exercise leads to stoppage of the decline in repair rates (to an approximately zero slope), whereas 
for male mice it just attenuates the decline (Figure 4d). For damage rates, female mice exhibit an 
attenuation of the rise with age whereas in male mice exercise stops the age-dependent rise exhibited 
by control mice.

For humans, we use net household wealth as a socioeconomic environmental factor that serves 
as a proxy for medical and behavioural interventions that are not individually tracked. This factor 
is not an intervention as in mice, and is simply correlational. As such we report correlations of 
wealth with repair and damage rates with age, rather than age-slopes after a specific intervention 
is initiated. In Figure 4—figure supplement 2, we show rates stratified by terciles of net household 
wealth, where the lowest tercile exhibits lower repair rates and higher damage rates for younger 
ages. Correspondingly, the FI is lower for individuals with a higher net household wealth. Treating 
the wealth variable as continuous, Figure 4e shows that repair rates are positively correlated with 
net household wealth, while damage rates are negatively correlated – with significant and stronger 
effects at younger ages. These results reinforce the findings in mice, where interventions impact 
both damage and repair rates. In humans, we also see some evidence of decreasing effects of 
wealth with age – although these may be confounded by recruitment effects depending on baseline 
age.

Damage and repair have broad timescales
In the results above, we considered the average damage and repair transition rates vs age. Since 
individual deficits undergo stochastic transitions between damaged and repaired states, we can also 
measure the lifetime of these individual deficit states (see Figure 5a). These lifetimes are interval 
censored (transitions typically occur between observation times) and can be right-censored (death 
or drop-out before transition occurs). We use an interval censored-analogue to the standard Kaplan-
Meier estimator for right censored data (see Maerials and methods) to estimate state-survival curves 
of individual damaged or repaired states. These state-survival curves in Figure  5, considering all 
possible deficits, represent the probability of a deficit remaining undamaged vs time since a repair 
transition, or remaining damaged vs time since a damage transition.

We generally observe a significant drop of state-survival probability at early times, indicating some 
rapid state transitions at or below the interval between measurements. However, all the curves also 
extend to very long times – towards the scale of organismal lifetime – indicating that both robustness 
and resilience operate over a broad range of timescales. These results highlight that repair can occur 
a long time after damage originally occurred. Note that the timescale of robustness as measured here 
is not robustness after a specific extrinsic stressor, but robustness from the implicit stressors of aging. 
A similar form of non-specific robustness has been measured in a previous study, using the onset age 
of disease (Arbeev et al., 2019).

As shown by exponential time-scales of resilience and robustness for individual deficits in Figure 5—
figure supplement 1 and Figure 5—figure supplement 2, mice deficits and human deficits exhibit a 
variety of time-scales of resilience and robustness. Some deficits repair soon after damage (or damage 

https://doi.org/10.7554/eLife.77632
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Figure 5. Resilience and robustness occur over both short and long time-scales in both mice and humans. (a) The time-scale of resilience is measured 
as the lifetime of the damaged state. The time-scale of robustness is measured as the lifetime of the undamaged state. Deficit state-survival curves, 
showing the probability of remaining in the current damaged or undamaged state since time of transition, are shown for (b) Mouse dataset 1, (c) Mouse 
dataset 2, (d) Mouse dataset 3, and (e) ELSA human dataset. The shaded regions are 95% posterior credible intervals. p-Values are shown on the lower 
left of each plot for generalized log-rank tests for the equality of the survival functions between the intervention or wealth groups (Zhao et al., 2008 
and Zhaeo, 2012).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Data used in figure.

Figure supplement 1. Time-scales of resilience for individual deficits.

Figure supplement 2. Time-scales of robustness for individual deficits.

Figure supplement 2—source data 1. Data used in figure.

Figure supplement 3. Sensitivity analysis of damage/repair.

Figure supplement 3—source data 1. Data used in figure.

Figure supplement 4. Sensitivity analysis of damage/repair.

Figure supplement 4—source data 1. Data used in figure.

https://doi.org/10.7554/eLife.77632
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soon after repair), and some repair (or damage) over a broad range of time-scales. The combination 
of all of these deficits result in the shape of the state-survival curves in Figure 5.

We evaluate the significance of the difference between state-survival curves with a generalized 
log-rank test (Zhao et al., 2008; Zhaeo, 2012). For the interventions studied, there are no dramatic 
changes of resilience or robustness timescales exhibited in mice. Exercise in the male mice slightly 
shifted the timescale of resilience, such that deficits were repaired faster in mice that were exercised 
compared to controls. We expect that we would observed stronger effects of the interventions on 
these time-scales if we had sufficient data to resolve the impact of the time at which the initial damage 
or repair event occurred – here we have grouped all times together. For humans (see Figure 5e), we 
see strong and significant effects on resilience and robustness timescales from household wealth in 
females, but not males. These effects are particularly strong for damage timescales, which charac-
terize robustness: states remain healthy longer at higher wealth terciles.

Discussion
We have presented a new approach for the assessment of damage (robustness) and repair (resilience) 
rates in longitudinal aging studies with binarized health attributes. With this approach, we have shown 
that both humans and mice exhibit increasing damage and decreasing repair rates with age, corre-
sponding to decreasing robustness and resilience, respectively. We also demonstrate that decreasing 
robustness and resilience with age contribute to the acceleration of deficit accumulation for organ-
isms. Decreasing robustness has approximately twice as large an effect when compared to declining 
resilience; decreasing robustness also has a stronger and significant effect on survival. While much of 
the focus in previous work has been on the decline of resilience in aging (Ukraintseva et al., 2021), 
our results indicate that decreasing robustness and decreasing resilience are both important processes 
underlying the increasing accumulation of health-related deficits with age, and the increasing rate of 
accumulation at older ages.

In the current study, the observed damage is assumed to occur due to natural processes, rather than 
a specific applied stressor (Kirkland et al., 2016; Colón-Emeric et al., 2020). Resilience measured by 
the observed repair also occurs without targeted interventions (certainly in mice, due to their absence 
of health-care), and so is likely to represent intrinsic resilience with respect to spontaneous damage 
due to the natural stressors of aging. Our approach has some similarities with recent approaches to 
measuring resilience by the autocorrelation timescale of intrinsic variations of continuous physiolog-
ical state variables (Pyrkov et al., 2021; Gijzel et al., 2017; Rector et al., 2021). An advantage of 
our approach, which uses binarized variables, is that we can estimate both resilience and robustness 
using similar methods on the same data – so we can compare their relative effects. Previous work has 
modeled the change in the total count of discrete deficits with age (Mitnitski et al., 2006; Mitnitski 
et al., 2007; Mitnitski et al., 2010; Mitnitski et al., 2012; Mitnitski et al., 2014), but did not sepa-
rately measure damage and repair. With our approach, we observe decreasing resilience and robust-
ness with age in both mice and humans.

There are caveats to our approach. We may miss fast damage and repair dynamics that occur 
on time-scales shorter than the separation between observed time-points, for example, we cannot 
observe daily or weekly changes in deficit states in mice or monthly changes in humans. Therefore, 
our measurements of damage and repair can only be interpreted as the net damage and net repair 
between observed time-points. Furthermore, since we have defined damage and repair (and robust-
ness and resilience) as average rates with respect to binarized attributes it remains an open question 
how they relate to damage and repair rates assessed from continuous health attributes. Our approach 
results in summary measures of damage and repair rates.

We are not aware of any selection bias in our mouse studies, and we applied joint modelling to 
mitigate survivor bias effects. To mitigate selection bias in the human data, we treated onset ages 
distinctly. There are nevertheless well-known ‘healthy volunteer’ effects that would bias the original 
population that we did not consider. Furthermore, we did not have human mortality data so we could 
not treat human survivor bias effects. Measurement errors could also contribute to both damage 
and repair rates – although presumably not in an age-dependent fashion. In contrast, we observe 
decreasing repair rates and increasing damage rates with age. Errors in deficit assessment are known 
to be small for mice (Feridooni et al., 2017; Kane et al., 2017). Supporting this, a sensitivity analysis 
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of pruning putative mouse measurement errors, shown in Figure 5—figure supplement 3, finds no 
qualitative changes.

We find that both damage and repair processes are targeted by interventions in mice. As a result, 
developing interventions to target either damage or repair separately is conceivable. While targeting 
either would affect net deficit accumulation, we found that the damage rate has a stronger effect on 
both mortality and the acceleration of damage accumulation than the repair rate. Consistent with this, 
recent work has shown that FI damage is also more associated with mortality than FI repair in humans 
(Shi et al., 2021). We predict that interventions that facilitate robustness (resistance to damage) may 
be more important at older ages, where damage accumulation normally accelerates. More broadly, 
rather than just targeting deficit accumulation or FI (Howlett et al., 2021), our results indicate that 
interventions could be improved by targeting an appropriate balance of damage and repair processes 
– in an age- and sex-dependent manner. Since both damage and repair occur on long timescales, this 
raises the possibility that these rates could be manipulated by interventions over a similarly broad 
range of timescales from the shortest times to organismal lifetimes. How to optimally deploy available 
interventions is not yet clear.

The effects of age on both damage and repair, in mice and humans, are qualitatively similar in 
male and female populations. Nevertheless, we have found that systemic interventions can have qual-
itatively distinct sex effects in mice. The ACE inhibitor enalapril has stronger effects in female mice. 
Voluntary exercise stopped the decline in repair rate with age for female mice, but not male mice, and 
stopped the increase in damage rate with age for male mice, but not female mice. These differences 
suggest that assessing both damage and repair rates, together with accumulated damage as a FI, in 
interventional aging studies can provide a clearer assessment of sex differences. Further studies are 
needed to tease out the sex-dependent effects of other aging interventions, and to provide quantita-
tive insight into the mortality-morbidity paradox, where females live longer but have higher FI scores 
than males (Kane and Howlett, 2021; Oksuzyan et al., 2008).

Summary measures of health such as the FI exhibit an accelerating accumulation of health deficits 
with age (Mitnitski et al., 2001; Mitnitski et al., 2005; Mitnitski et al., 2012; Mitnitski et al., 2013). 
This universally observed behavior must be reflected in either increasing damage rates with age, 
decreasing repair rates, or – as we find – both. However, the question of whether, and by what mech-
anisms, damage and repair processes are coupled during aging remains unanswered. Both damage 
and repair rates have been typically modelled as functions of the health state in descriptive models of 
aging (Taneja et al., 2016; Farrell et al., 2016; Farrell et al., 2018), but without a mechanistic rela-
tionship between them apart from that imposed statistically by the observed accumulated damage. 
The precise relationships – and whether they are a universal feature of all aging organisms – remains 
to be determined. Studies of interventions should prove useful in this regard, because they can sepa-
rately target damage and repair.

Our observations that repair timescales are broadly distributed, up to lifespan-scales, raise three 
fundamental questions for resilience studies. First, are interventions that facilitate recovery similarly 
effective after a broad range of timescales? This would imply that we may be able to target resilience 
with interventions over a longer timeframe than just acutely when damage occurs. Damage propa-
gation may nevertheless limit the benefits of such late repair. Second, what determines the recovery 
timescales? As we have shown (Figure 5—figure supplement 1), different health attributes can have 
quite different recovery times. Third, would a similar broad range of resilience timescales be observed 
for challenge experiments with an induced stressor, and how might that depend on the magnitude 
and scale of the damage?

We have defined damage in terms of discrete transitions of dichotomized variables. It is possible 
that dichotomized deficits probe qualitatively different timescales than the continuous measures 
that are often considered in resilience studies. Future experimental resilience studies across a range 
of health attributes should explore longer timescales. It will also be important to assess how the 
broad range of recovery timescales we have uncovered compare to timescales extracted from auto-
correlations of physiological state variables – which have also been limited to shorter times (Pyrkov 
et al., 2021).

We have also limited our study to ‘clinical’ variables at organismal scales. Further studies of resil-
ience and robustness at different biological scales from cellular to organismal, with both continuous 
and discrete variables, and over organismal timescales, will help us to better understand how damage 
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and repair at cellular scales influences and is influenced by similar processes at organismal scales. It 
is easier to conceive of how damage can propagate from cellular to organismal (Howlett and Rock-
wood, 2013), but harder to conceptualize how cellular repair processes such as DNA repair pathways 
and autophagy (Kirkwood, 2011) might similarly propagate.

Most of the mouse health deficits analyzed here have previously been shown to reverse either spon-
taneously or in response to interventions including drug treatment or exercise (Supplementary file 
1). There are only a few deficits that rarely or never repaired in the current study: cataracts, tumours, 
diarrhea, and prolapses. Both this study and the literature suggest that most deficits that make up the 
mouse frailty index can be reversed or repaired. Investigation of the specific mechanisms responsible 
for the spontaneous repair of deficits, and how they scale from the cell to the organism, should be 
the focus of future work. We speculate that spontaneous repair occurs by the same pathways that are 
targeted by health interventions. It is likely that deficits reverse if interventions target one or more 
of the molecular/cellular pillars of aging, including macromolecular damage, dysregulated stress 
response, disruption in proteostasis, metabolic dysregulation, epigenetic drift, inflammaging, and stem 
cell exhaustion (Goh et al., 2022). In terms of the specific interventions investigated here, previous 
studies have shown that beneficial effects of enalapril treatment and exercise on frailty are attributable, 
at least in part, to effects on chronic inflammation (Bisset et al., 2022; Keller et al., 2019).

The increasing availability of longitudinal health data over the lifespan of model aging organisms 
facilitates the analysis of damage and repair rates, and how they extend and change over the organ-
ismal lifespan. These damage and repair rates underlie the accumulation of damage that describes 
aging. Here we have shown the value of considering both resilience and robustness over the lifespan. 
Further studies will be able to determine how widespread organismal and sex differences in these 
effects are, and how universal they may prove to be. Studies of the effects on damage and repair 
rates of both targeted and systemic interventions will also be crucial. We have studied only three 
interventions or conditions so far (e.g. enalapril and exercise in mice, and wealth in humans). There are 
many other possibilities, including treatment with geroprotectors (Gonzalez-Freire et al., 2020) and 
lifestyle interventions, that could be deployed both in humans and in aging animal models.

Materials and methods
Mouse data
For the mouse portion of this manuscript, published data on longitudinal health-related deficits in 
C57BL/6 mice from three papers was used (Keller et al., 2019; Bisset et al., 2022; Schultz et al., 
2020). A brief summary of the methods of each paper is below.

Mouse dataset 1 (Keller et al., 2019)
Male and female C57BL/6 mice were assessed for deficits approximately every 4 weeks from 16 to 
either 21 months of age (females) or 25 months of age (males). Mice were fed either a diet containing 
enalapril (280 mg/kg) or control diet for the duration of the experiment. After pre-processing (below), 
this data contains 21 female control mice, 25 female enalapril mice, 13 male control mice, and 25 male 
enalapril mice.

Mouse dataset 2 (Bisset et al., 2022)
Male and female C57BL/6 mice were assessed for deficits approximately every 2 weeks from 21 to 
25 months of age. Mice were all singly housed, and half were provided a running wheel for voluntary 
exercise. After pre-processing (below), this data contains 11 female control mice, 11 female exercise 
mice, 6 male control mice, and 6 male exercise mice.

Mouse dataset 3 (Schultz et al., 2020)
Male C57BL/6Nia mice were assessed for deficits approximately every 6 weeks from 21 months of 
age until their natural deaths. After pre-processing (below), this data contains 44 male control mice.

Mouse clinical frailty index assessment
Each of the papers above assessed health deficits using the mouse clinical frailty index as described 
previously (Whitehead et  al., 2014). Briefly, this assessment involves scoring 31 non-invasive 
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health-related measures in mice. Most measures are scored as 1 for a severe deficit, 0.5 for a moderate 
deficit and a 0 for no deficit. Deficits in body weight and temperature were scored based on deviation 
from reference values in young adult animals, such that a difference of less than 1 SD was scored 0, a 
difference of ±1 SD was scored 0.25, a difference of ±2 SD was scored 0.5, a difference of ±3 SD was 
scored 0.75, and a difference of more than 3 SD received the maximal deficit value of 1 (Whitehead 
et al., 2014). The deficits of malocclusions and body temperature were not assessed in mouse group 
3 (Schultz et al., 2020), leaving only 29 deficits for this dataset.

The variables in the Frailty Index are, ‘Alopecia’, ‘Fur color loss’, ‘Dermatitis’, ‘Coat condition’, 
‘Loss of whiskers’, ‘Kyposis’, ‘Distended abdomen’, ‘Vestibular disturbance’, ‘Cataracts/corneal 
capacity’, ‘Eye discharge/swelling’, ‘Microphthalmia’, ‘Malocclusions’, ‘Rectal prolapse’, ‘Penile 
prolapse’, ‘Mouse grimace scale’, ‘Piloerection’, ‘Tail stiffening’, ‘Gait’, ‘Grip strength’, ‘Body condi-
tion’, ‘Hearing loss’, ‘Vision loss’, ‘Menace reflex’, ‘Tremor’, ‘Tumors/growths’, ‘Nasal discharge’, ‘Diar-
rhoea’, ‘Breathing rate/depth’, ‘Body temperature’, ‘Body weight’. The FI reference sheet at https://​
github.com/SinclairLab/frailty, shows examples of mice corresponding to the different levels of the 
deficits.

Mouse data pre-processing
For mouse dataset 1, we impute missing deficit values by propagating the last observed value forward. 
If the first observed deficit is missing, it is imputed by propagating the first observed value backward. 
Less than 1% of all total deficit values are missing in this dataset. No values in the other datasets are 
missing.

Deficits are scored on a fractional scale, with deficit ‍i‍ having values ‍di ∈ {0, 0.25, 0.5, 0.75, 1}‍. To treat 
these as binary, we represent each fractional deficit di by 4 ordered binary deficits, ‍[d

(1)
i , d(2)

i , d(3)
i , d(4)

i ]‍. 
Fractional deficits are then represented by setting ‍4 × di‍ of these ordered binary deficits to 1. For 
example if ‍di = 0.75‍, this is represented as ‍[1, 1, 1, 0]‍.

A new Frailty Index is then created by taking all of these new binary deficits, representing a 
‍4 × 31 = 124‍ item Frailty Index (‍4 × 29 = 116‍ for mouse dataset 3). This process preserves the FI scores, 
and a single repair or damage transition on this scale can be interpreted as taking a step of size 0.25 
on the fractional deficit scale. Each step of a deficit originally on the ‍[0, 0.5, 1]‍ scale corresponds to 2 
steps of size 0.25 on this new scale.

Measurement times with abnormally short or long intervals are removed. In mouse dataset 2, 
measurement times less than 0.1 months from the previous time are removed. In mouse dataset 3, 
measurement times more than 2 months from the previous time are removed.

In each dataset, mice with less than 2 observed time-points are removed.

Human data and pre-processing
We use human data from the English Longitudinal Study of Aging (Phelps et al., 2020; Steptoe et al., 
2014). We select individuals that have full data for net household wealth and activities of daily living 
(ADL) and instrumental activities of daily living (IADL). A Frailty Index is created from the count of 10 
possible ADLs and 13 possible IADLs, giving a fraction out of 23. Each of these variables are binary 
with values ‍{0, 1}‍.

The ADLs are ‘Have difficulty’: ‘Walking 100 yards’, ‘Sitting for about two hours’, ‘Getting up from 
a chair after sitting for long periods’, ‘Climbing several flights of stairs without resting’, ‘Climbing one 
flight of stairs without resting’, ‘Stooping, kneeling, or crouching’, ‘Reaching or extending arms above 
shoulder level’, ‘Pulling/pushing large objects like a living room chair’, ‘Lifting/carrying over 10 lbs, 
like a heavy bag of groceries’, and ‘Picking up a 5 p coin from a table’. The IADLs are ‘Have difficulty’: 
‘Dressing, including putting on shoes and socks’, ‘Walking across a room’, ‘Bathing or showering’, 
‘Eating, such as cutting up your food’, ‘Getting in or out of bed’, ‘Using the toilet, including getting 
up or down’, ‘Using a map to get around a strange place’, ‘Preparing a hot meal’, ‘Shopping for 
groceries’, ‘Making telephone calls’, ‘Taking medications’, ‘Doing work around the house or garden’, 
and ‘Managing money, e.g. paying bills and keeping track of expenses’.

We restrict individuals to those that were recruited to the study between the ages of 50 and 
89 years. We drop individuals with follow-up time intervals above 4 years and individuals with fewer 
than 6 follow-ups. This removes 15399 individuals from the dataset, 4326 of which only had a single 
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time-point, 2291 had 2 time-points, 2095 had 3 time-points. The final selected individuals are followed 
for between 13 and 18 years, with 60% of the individuals being followed for 16 years.

We use net household wealth, as determined in the financial assessment in wave 5 of the ELSA 
data. We drop individuals that have parts of this assessment imputed. The raw value of net household 
wealth spans several orders of magnitude (and includes negatives for individuals in debt), and so is 
transformed by ‍w = log

(
wraw + mean(wraw)

)
‍.

After pre-processing, this data contains 1049 males and 1300 females with time-intervals of approx-
imately 2 years between observations. There are 1222 individuals from baseline ages in ‍[50, 60]‍, 827 
with baseline ages in ‍[60, 70]‍, 281 with baseline ages in ‍[70, 80]‍, and 19 with baseline ages in ‍[80, 90]‍.

Extracting damage and repair counts
In each dataset, we observe the state of ‍N ‍ binary health deficits ‍{djk}N

k=1‍ for each subject at a set of 
observation times ‍{tj}J

j=1‍. Summing up the number of deficits at each time, we get deficit counts for 

each observation time, ‍{nj}J
j=1‍, which is used to compute the Frailty Index ‍fj = nj/N ‍.

We compute the number of deficits damaged (‍0 → 1‍ transitions) and repaired (‍1 → 0‍ tran-
sitions) between two time points tj and ‍tj+1‍, denoted as ‍n

d(tj)‍ or ‍n
r(tj)‍. These counts satisfy 

‍n(tj+1) = n(tj) + nd(tj) − nr(tj)‍, linking these damage and repair processes with the Frailty Index.

Modelling
We model deficit repair and damage as Poisson point processes with time-dependent rates, ‍λ

r(t)‍ 
and ‍λ

d(t)‍. The count of deficits repaired or damaged in an interval ‍[t1, t2]‍ is assumed to follow a 
Poisson distribution, with mean equal to the instantaneous rate ‍λ

r(t)‍ or ‍λ
d(t)‍ integrated over this 

interval times the number of possible deficits available to be repaired ‍Λ
r(t) =

´
λr(t)ntdt‍, or damaged 

‍Λ
d(t) =

´
λd(t)(N − nt)dt‍. For computational convenience, we use constant rates within each time-

interval to approximate these integrals, ‍Λ
r(t) ≈ λr(t)nt∆t‍ or ‍Λ

d(t) ≈ λd(t)(N − nt)∆t‍.
We perform Bayesian inference on our models by inferring the posterior distribution of the param-

eters given the observed data.

Joint longitudinal-survival model for mice data
We use a joint modelling framework to model repair and damage rates, while assessing their effect on 
survival. We decompose the multivariate joint distribution of the observed longitudinal damage and 
repair counts and survival outcome by coupling survival with the repair and damage rates ‍λ

r
i (t)‍ and 

‍λ
d
i (t)‍(Hickey et al., 2016; Brilleman et al., 2020),

	﻿‍ p(Ti, ci, {nr
i (t)}, {nd

i (t)}|λr
i (t),λ

d
i (t)) = p(Ti, ci|λr

i (t),λ
d
i (t))p({nr

i (t)}, {nd
i (t)}|λr

i (t),λ
d
i (t)).‍�

We indicate final follow-up times for individual ‍i‍ as ‍Ti‍ with a censoring indicator ci where 1 is 
censored and 0 is an observed death.

Longitudinal component
We use a linear Poisson model for the longitudinal damage and repair rates. A Softplus function, 

‍log (1 + ex)‍, is used to enforce positive rates. This function is chosen because it is approximately linear 
for larger values of ‍x‍, in contrast to ‍ex‍ which is often used for Poisson models (which resulted in poor 
behaviour for our models). The form of this model is,

	﻿‍ λr
i (t) = Softplus

(
βr · xi(t) + br

i,0 + br
i,1t

)
,‍� (1)

	﻿‍ λd
i (t) = Softplus

(
βd · xi(t) + bd

i,0 + bd
i,1t

)
,‍� (2)

	﻿‍
nr

i (tj)|λ
r
i (tj), ni(tj) ∼ Poisson

(
ni(tj)λr

i (tj)(tj+1 − tj)
)

,
‍� (3)

	﻿‍
nd

i (tj)|λd
i (tj), ni(tj) ∼ Poisson

(
(N − ni(tj))λd

i (tj)(tj+1 − tj)
)

,
‍� (4)

	﻿‍ ni(tj+1) = ni(tj) + nd
i (tj) − nr

i (tj).‍� (5)

The first two equations describe the time-dependent repair and damage rates, ‍λ
r(t)‍ and ‍λ

d(t)‍. These 
rates represent the probability of repair or damage, per deficit per unit time. These rates are multiplied 
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by the number of deficits that can repair ‍n(tj)‍ or the number that can damage ‍N − n(tj)‍ and the time-
interval ‍ttj+1 − tj‍ to compute the mean count of repaired or damaged deficits for Poisson distributions. 
The last Equation 5 shows how we can compute the total count of deficits from this model, allowing 
this model to be used to model the Frailty Index as well.

The full-cohort parameters are denoted ‍β‍ and the subject-specific intercept and time-slopes ‍bi,0, bi,1‍. 
The variables ‍xi(t)‍ include the covariates and their interactions with sex and intervention group,

	﻿‍ xi(t) = (1, t, sex, treatment, f, a0, sex × treatment, sex × t, treatment × t, sex × treatment × t).‍�

The “treatment" variable is a 0/1 indicator for enalapril in mouse group 1 or exercise in mouse 
group 2. The other variables are the time from baseline ‍t‍, the Frailty Index ‍f ‍, baseline age a0, and sex 
(M/F). These interactions allow sex and intervention group specific time-slopes.

The repair and damage processes are linked by including correlations between the subject-specific 
parameters ‍[b

r
i , bd

i ] ∼ N (0,Σ)‍.

Survival component
We jointly model these repair and damage processes with survival, with proportional hazards and a 
baseline hazard parameterized with M-splines (Ramsay, 1988) (which are always non-negative). The 
damage and repair processes are linked with survival by including damage rate and repair rate in the 
hazard rate,

	﻿‍
hi(t) = h0(t, sex) exp

(
γ · ui(t) + γrSoftplus−1λr

i (t) + γdSoftplus−1λd
i (t)

)
,
‍� (6)

	﻿‍
h0(t) = (male) ·

L∑
l=1

al,maleMl,3(t|k) + (female) ·
L∑

l=1
al,femaleMl,3(t|k),

L∑
l=1

al = 1, al ≥ 0,
‍�

	﻿‍
Si(t) = exp

(
−
ˆ t

t0
hi(s)ds

)
.
‍�

(7)

The first equation describes the hazard rate ‍hi(t)‍ in terms of the covariates ‍ui‍ and the repair and damage 
rates. The baseline hazard ‍h0(t, sex)‍ is modeled with sex-specific splines, due to the large disparity in 
survival by sex. The covariates are ‍ui = (1, sex, treatment, sex × treatment, f, a0)‍. The ‍{Ml,3(t|k)}L

l=1‍ func-
tions are M-spline basis functions of order 3 with an ‍L‍-component knot vector ‍k‍.

Priors and hyperparameters
We use weakly informative priors to regularize parameters,

	﻿‍ βr
0, βd

0 , γ0 ∼ N (0, 3), βr, βd, γ, γr, γd ∼ N (0, 1),‍� (8)

	﻿‍ [br
i , bd

i ] ∼ N (0,Σ), Σ = σΩσ, σ ∼ HalfCauchy(0, 1), Ω ∼ LKJ(2),‍� (9)

	﻿‍ a ∼ Dirichlet(1.0, L = 17), k = {min({Ti}i), Q0.05({Ti}i), ..., Q0.95({Ti}i), max({Ti}i)}.‍� (10)

Broad ‍N (0, 3)‍ priors are used on intercept parameters and narrow ‍N (0, 1)‍ priors on covariate coeffi-
cients (Equation 8). The covariance matrix ‍Σ‍ for the coupling of the subject-specific parameters ‍bi‍ is 
decomposed in terms of a correlation matrix ‍Ω‍ with an LKJ prior and standard deviations ‍σ‍ with half-
Cauchy distributions (Equation 9). The LKJ distribution is a standard prior for correlation matrices, 
where ‍LKJ(η = 1)‍ is a uniform distribution over correlation matrices (Lewandowski et  al., 2009). 
Increasing ‍η‍ results in a sharper peak at the identity matrix.

These weak priors have the effect of making large parameter values unlikely (all parameters are put 
on the same scale by standardizing the values of all covariates first to mean 0 and variance 1), which 
improves the computational speed of the MCMC sampler. Choice of such weak priors affect quanti-
tative results to a small extent, but do not affect our qualitative results – like other hyperparameters.

Spline coefficients ‍a‍ use a Dirichlet distribution with concentration 1, representing a uniform 
prior on the simplex ‍

∑L
l=1 al = 1, al ≥ 0‍. We use ‍L = 17‍ spline knots with knots at the minimum last 

follow-up age, the maximum, and 15 uniformly spaced quantiles from 0.05 to 0.95 of the last follow-up 
age (Equation 10).

Integrals of the hazard rate are computed with 5-point Gaussian Quadrature between each 
observed time interval.
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Non-linear modeling for human data
There is much more human data than mice and the data is more complex, where linear effects are not 
sufficient to capture the combined influence of wealth, baseline age, and time. We use a non-linear 
Poisson model with non-constant coefficients to include additional degrees of freedom. We parame-
terize these non-constant coefficients with B-splines. The individuals selected from ELSA with wealth 
data do not have mortality data available, simplifying the model from the joint model used above for 
mice.

Our model has the form,

	﻿‍ λr
i (t) = Softplus

(
βr

0 · xi(t) + βr
1(w, a0) + βr

2(w, a0) × sex + βr
3(w, a0) × t + βr

4(w, a0) × sex × t + br
i,0
)
,‍�(11)

	﻿‍ λd
i (t) = Softplus

(
βd

0 · xi(t) + βd
1(w, a0) + βd

2(w, a0) × sex + βd
3(w, a0) × t + βd

4(w, a0) × sex × t + bd
i,0
)
,‍�(12)

	﻿‍
nr

i (tj)|λ
r
i (tj), ni(tj) ∼ Poisson

(
ni(tj)λr

i (tj)(tj+1 − tj)
)

,
‍� (13)

	﻿‍
nd

i (tj)|λd
i (tj), ni(tj) ∼ Poisson

(
N − ni(tj)λd

i (tj)(tj+1 − tj)
)

,
‍� (14)

where ‍w‍ denotes wealth and a0 denotes baseline age and,

	﻿‍ xi(t) = (1, t, sex, w, f, a0, sex × t, w × t, a0 × t, sex × f, w × f, a0 × f).‍� (15)

The non-constant coefficients ‍{βk(w, a0)}k‍ are implemented as 2D B-splines for wealth and baseline 
age with 5 wealth knots and 5 baseline age knots at the minimum, maximum and terciles of these 
variables. We use smoothing 2D random-walk priors on the spline coefficients,

	﻿‍ s11, τw, τb0 ∼ N (0, 1), pw, pb0 ∼ Dirichlet(1.5),‍� (16)

	﻿‍ sij ∼ pwN (si−1,j, τw) + pb0N (si,j−1, τb0 ),‍� (17)

	﻿‍ βk(w, a0) =
∑5

i,j=1 sijBi,3(w; kw)Bj,3(a0; ka0 ).‍� (18)

All other priors are the same as in the mouse modelling.
Note, in the human data we do not include subject-specific time-slopes ‍b

r
i,1‍ and ‍b

d
i,1‍ as we did in 

the mouse data, since we have much shorter time-series. When these slopes are included, we see 
evidence of the model over-fitting to the data by the proportion of residuals including zero within 95% 
credible intervals being much higher than 0.95 – nearing 0.99 to 1.00.

Derivatives
We can compute the derivative of the Frailty Index according to the modelled repair and damage 
rates,

	﻿‍
d
dt fi(t) = (1 − fi)λd

i (t) − fiλr
i (t).‍� (19)

To understand the effect of interventions, we compute the derivative with respect to time for the 
repair and damage rates,

	﻿‍

d
dtλ

r
i (t) = ∂λr

i (t)
∂t + ∂λr

i (t)
∂f

dfi(t)
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=
(
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dt + βr · dxi(t)
df + br

i,1

)
eλ
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i (t)

eλ
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.
‍�

(20)

	﻿‍

d
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i (t)
∂f

dfi(t)
dt ,

=
(
βd · dxi(t)
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i (t)

eλ
d
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.
‍�

(21)

This is the slope of these rates vs time, with the increase in the Frailty Index ‍f(t)‍ included. While we 
only include explicit linear effects of time in the model, the increase in Frailty Index with time can 
influence the derivative to change.

We can compute the curvature as the second derivative of the Frailty Index with age, written in 
terms of first derivatives of the rates,

	﻿‍
d2

dt2 fi(t) =
[

(1 − fi(t))
dλd

i (t)
dt − dfi(t)

dt λd
i (t)

]
−

[
fi(t)

dλr
i (t)

dt + dfi(t)
dt λr

i (t)
]

.
‍� (22)
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The first group of terms are those involving damage rate (robustness) and the second group of terms 
are those involving repair (resilience). These terms are plotted in Figure 3.

Repair and damage timescale mice and human data
We observe the amount of time that has passed between damage and repair events, and vice versa. 
This can be used to determine the time-scales of these damage and repair processes. However, 
since a deficit might damage and the individual dies before the deficit is ever repaired, there is right 
censoring. Additionally, since observations are only made at specific time-points so that we cannot 
determine the exact time at which a deficit damaged or repaired, there is interval censoring. To esti-
mate the distribution of repair and damage times, we treat repair and damage events for each deficit 
as a mixture of interval and right censored events (Zhao et al., 2008; Zhaeo, 2012). Accordingly, we 
model state-survival curves for the damaged state (time-scale of resilience) and undamaged state 
(time-scale of robustness).

We use a Bayesian survival model with M-splines for the baseline hazard,

	﻿‍
h(t) = eγ0

L∑
l=1

alMl,3(t|k),
L∑

l=1
al = 1, S(t) = exp

(
−
ˆ t

t0
h(s)ds

)
.
‍�

(23)

This is fit separately for sex and control/intervention groups.
We include both interval-censoring and right-censoring in the likelihood for individual ‍i‍,

	﻿‍ p(TLower
i , TUpper

i , Ti, ci|{al}l|, γ0) = [S(Ti)]ci [S(TLower
i ) − S(TUpper

i )]1−ci ,‍� (24)

where ‍TLower‍ is the lower interval bound, ‍TUpper‍ is the upper interval bound, ‍T ‍ is a time of right 
censoring, and ‍c‍ is the right censoring indicator (c=1 event censored, c=0 event occurs). We use 32 
knots set at 30 evenly spaced quantiles of the event times from 0.1 to 0.9 together with the minimum 
and maximum event time. A uniform ‍Dirichlet(1.0, 32)‍ prior is used for the spline coefficients and a 
broad ‍N (0, 10)‍ prior for ‍γ0‍.

MCMC sampling
We use the STAN no U-turn sampler (NUTS) (Stan Development Team, 2020). We use 4000 warm-up 
iterations and 6000 sampling iterations on four separate chains for the mouse joint models. For mouse 
dataset 2, we use the sampler settings adapt_delta = 0.95, max_treedepth = 20 to avoid divergent 
sampler transitions. For the human model, we use two separate chains with 1000 warm-up itera-
tions and 3000 sampling iterations. For the interval-censored Bayesian survival models, we use 2000 
warm-up iterations and 3000 sampling iterations for four separate chains. Number of sampling itera-
tions are chosen to achieve adequate effective sample sizes, while remaining computationally feasible.

In Figure 2—figure supplement 1 we perform posterior predictive checks (Gabry et al., 2019; 
Gelman et al., 2020) for the mice and human models by plotting observed and simulated distribu-
tions of counts. We also compute ‍R2‍ statistics (Vehtari et al., 2021) and the coverage of credible 
intervals for residuals.

Sensitivity analysis
Some of the observed damage and repair transitions may be due to measurement error or data entry 
errors. In particular, we believe this may be the case for some of the isolated damage and repair tran-
sitions. For example, if we consider 5 time-points where a variable has values ‍{0, 0, 1, 0, 0}‍, this may be 
an erroneous transition.

Under the assumption that such erroneous transitions will most likely occur isolated from true 
damage/repair, we prune the data by removing these transitions, e.g. ‍{0, 0, 1, 0, 0}‍ becomes ‍{0, 0, 0, 0, 0}‍ 
(erroneous damage) or ‍{1, 1, 0, 1, 1}‍ becomes ‍{1, 1, 1, 1, 1}‍ (erroneous repair). We only prune damage/
repair events isolated by 2 of the opposite state on either side, as shown here. In Figure 5—figure 
supplement 3, we show that pruning these values only has a limited effect.

https://doi.org/10.7554/eLife.77632
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Code and data availability
Our code for data pre-processing, modelling, and plotting is available https://github.com/​
Spencerfar/aging-damagerepair, (Farrell, 2022 copy archived at swh:1:rev:4fe6f883d37dda6b-
9059c53aa9366f4ff2665a43). Human ELSA data can be accessed by agreeing to an End User 
Licence https://www.elsa-project.ac.uk/accessing-elsa-data and downloading waves 1–9. Mouse 
dataset 3 is freely available at https://github.com/SinclairLab/frailty, (Sinclair Lab, 2022; Schultz 
et al., 2020).
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