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Abstract 
Widespread interest in nondestructive biomarkers of aging has led to a multitude of biological ages that each proffers a “true” health-adjusted 
individual age. Although each measure provides salient information on the aging process, they are each univariate, in contrast to the “hallmark” 
and “pillar” theories of aging, which are explicitly multidimensional, multicausal, and multiscale. Fortunately, multiple biological ages can be sys-
tematically combined into a multidimensional network representation. The interaction network between these biological ages permits analysis 
of the multidimensional effects of aging, as well as quantification of causal influences during both natural aging and, potentially, after anti-aging 
intervention. The behavior of the system as a whole can then be explored using dynamical network stability analysis, which identifies new, 
efficient biomarkers that quantify long-term resilience scores on the timescale between measurements (years). We demonstrate this approach 
using a set of 8 biological ages from the longitudinal Swedish Adoption/Twin Study of Aging (SATSA). After extracting an interaction network 
between these biological ages, we observed that physiological age, a proxy for cardiometabolic health, serves as a central node in the network, 
implicating it as a key vulnerability for slow, age-related decline. We furthermore show that while the system as a whole is stable, there is a 
weakly stable direction along which recovery is slow—on the timescale of a human lifespan. This slow direction provides an aging biomarker, 
which correlates strongly with chronological age and predicts longitudinal decline in health—suggesting that it estimates an important driver of 
age-related changes.
Keywords: Biological age, Complexity, Eigen analysis, Systems biology

The continued search for a biomarker of aging that quanti-
fies the effects of natural aging and antiaging interventions 
(1–3) has resulted in a proliferation of biological ages (BAs) 
(3), including recent epigenetic clocks (4) (such as Refs (5–8)). 
Each BA estimates an individual’s health-adjusted effective 
age, which may differ from their chronological age (CA). Each 
BA uses a model that converts a battery of measurements into 
a univariate proxy for health, either using regression on CA 
(7) or a heuristic mapping into a specific measure of health 
such as risk of death (5,6). Popular BAs have been extensively 
validated and are often sensitive to mortality risk (9) and the 
effects of antiaging interventions (2). Although it is tempting 
to simply pick the best BA for a particular application, or 
aggregate BAs using a heuristic approach (10,11), this risks 
missing the effects of multivariate interactions during the 
aging process.

Aging is putatively an interacting multivariate, multicausal 
process (12–15), as has borne out explicitly in computational 
studies (16–18). This puts aging firmly in the purview of com-
plexity science, where network analysis can be used to account 
for potentially catastrophic confounding effects due to inter-
actions such as feedbacks between biological variables (12). 
Such confounding effects could explain the conflicting results 
emerging from antiaging intervention studies (2,19,20). 

Learning the underlying network topology can help us to 
explain these confounding effects, and also to identify vul-
nerabilities of the biological system. For example, networks 
with feedback loops may be vulnerable to run-away effects 
(12), while bottlenecks through high-connectivity nodes may 
put a network at risk of complete collapse if those vital nodes 
are damaged (21,22). Networks also provide a useful tool 
for visualizing and quantifying causal sequences: both during 
natural aging and, potentially, after interventions.

Fortunately, the complexity of the problem enables an ele-
gant approach for processing and interpreting a network of 
interacting BAs. Dynamical stability analysis tells us that sys-
tems which are mostly stable—such as living organisms—can 
be understood by the way in which they respond to small 
perturbations. That is, we look for longitudinal disruptions 
to homeostasis and subsequent recovery (or lack thereof) 
(23). The eigen-directions provide a spectrum of fundamental 
recovery rates (timescales), oriented to completely account for 
the complex interactions of the network. These rates describe 
canonical changes so that we can infer long-term behavior 
by the slowest recovery rates (23,24), which determine sys-
tem resilience (25). Taking a long time to recover is indica-
tive of weak stability and hence vulnerability to stochastic 
stressors, whose effects tend to pile up along slow or unstable 
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eigen-directions. Indeed, prior work on health biomarkers 
showed that across 4 data sets (2 mice and 2 humans), the 
dominant risk direction for survival or dementia onset was 
always the first or second least-stable (slowest) eigen-direction 
(23). Furthermore, a recent deep learning result from mice has 
shown the existence of an unstable latent variable (26) with 
properties similar to the frailty index (FI) (20,27)—notably 
nonlinear growth with age and sensitivity to antiaging inter-
vention. Since salient aging information naturally condenses 
into the least stable (slowest recovery) eigen-directions, these 
least stable eigen-directions are the best way to describe the 
collective aging behavior of a network of BAs.

By using longitudinal data, we can also potentially infer 
causality within our network. We have already developed a 
generic model for homeostasis, which estimates a network of 
interactions between biomarkers together with steady-state 
behavior (23). Although our model is trained using observa-
tional data (28), we expect that interventions that cause small 
perturbations will behave similarly to the random stresses, 
which drive observational data—because these represent the 
random effects of interventions that individuals experience 
throughout their lives, such as lifestyle changes, medicine, 
and disease. Previously, we found that including such directed 
cause → effect links conferred little benefit in reducing the 
root mean squared error (RMSE) of biomarker trajecto-
ries. Here, we revisit this question with a novel quantitative 
score based on predicting the correct direction of biomarker 
change. As a result, we obtain a model that predicts both the 
causal sequence of events occurring during normal aging and 
a best guess for how interventions will propagate.

We demonstrate that network analysis can leverage the 
abundance of BAs to answer fundamental questions about 
what causes aging and about how aging systems are likely 
to respond to interventions. We apply our approach to lon-
gitudinal multivariate BA data, generating a network inter-
actome capable of capturing the coordinated effects of the 
BAs. By considering BAs from multiple biological scales we 
can surmise how the effects of aging propagate from DNA 
to functional decline. Once the network is estimated, we can 
analyze its eigen-directions to understand how the aggregate 
effects of multiple BAs affect the organism as time progresses. 
This yields dominant natural variables, which are the salient 
features of aging and provide canonical coordinates. We show 
that the least stable natural variable is an efficient choice for 
monitoring the aging process. We also show that the interac-
tion network has vulnerabilities, which are consistent with 
qualitative theories of aging, and is able to describe con-
founding effects of model interventions.

Method
Model
We model an arbitrary dynamical system near a stable 
(homeostatic) point as

�bn+1 = �bn +W∆tn+1(�bn − �µn) + �εn+1

�εn+1 ∼ N(0,Σ|∆tn+1|)
�µn ≡ �µ0 +Λ�xn (1)

where �bn represents an individual’s set of BAs measured at 
time timepoint tn and ∆ tn+1 ≡ tn+1 − tn is the measurement 
interval. Each individual has a different number of total 
measurements before leaving the study, Ti, and hence eqn 

(1) applies to the Ti − 1 pairs of sequential measurements; 
dropout and missing data are discussed below and in Sup-
plementary Material. We refer to this model as the Stochastic 
Finite-difference (SF) model, reflecting its relationship to the 
Stochastic Process model (29), which is the generalized con-
tinuous version of the SF model (23). The model estimates: 
an equilibrium position, �µn, a causal, resilience parameter, 
W , which captures an interacting recovery network; and a 
noise term, Σ which implicitly includes additional effects not 
in the model—such as nonlinear effects and fast dynamical 
changes. The model is only sensitive to changes which occur 
slower than the timescale set by ∆ tn+1, which for this study 
is approximately 3 years. This means that short-term changes 
such as due to a flu infection appear in the noise term, Σ. 
W  captures only long-term “resilience,” that is, longitudinal 
correlations, over the course of years—such as age-related 
decline. The equilibrium position, �µn, is allowed to vary lin-
early with respect to a set of covariates for each individual, 
�xn, through Λ.

The diagonal elements of W  permit recovery toward �µn, 
whereas the off-diagonals couple values across BAs,

E(bjn+1 − bjn)
E(∆tn+1)

= WjjE(bjn − µjn) +
∑
k�=j

WjkE(bkn − µkn)
(2)

where E (x) represents the expectation value of x. (In deriv-
ing eqn (2) we assume that the current BA values, bjn, are 
negligibly correlated with the follow-up time, ∆ tn+1.) This 
means that if—through intervention or natural aging—the 
values of some of the BAs change, bk, then we will see a 
change in each different bj via Wjk. The diagonal elements 
Wjj are the marginal recovery rates of bj ignoring all other 
BAs, whereas the off-diagonal elements Wjk allow interac-
tions between different BAs—hastening or ameliorating their 
decline. Hence, changes to one BA can propagate into the 
other BAs, allowing for a central driver of either age-related 
dysfunction or antiaging treatment. The system only stops 
when each bj simultaneously reaches its equilibrium posi-
tion, µjn. As we will see, the estimated equilibrium positions 
can only be reached well beyond the lifespan of normal 
humans and hence the system drifts indefinitely. The inter-
actions, W , can be simplified by diagonalization using the 
eigen-decomposition to yield a set of composite natural aging 
variables zk which satisfy

E(zkn+1 − zkn)
E(∆tn+1)

= λkE(zkn − µ̃kn) (3)

for �z ≡ P−1�b  and �̃µ ≡ P−1�µ , where λk is the associated eigen-
value. We index the zk by their sorted eigenvalue strength, 
such that z1 has the greatest (closest to +∞) eigenvalue λ1.  
(For simplicity, we drop the tilde notation for the remainder 
of the paper.) Observe that the natural aging variables, zk, do 
not interact: they either increase, decrease or stay the same, 
depending on the value of Re (λk) as can be seen by iterating 
eqn (3). (Im (λk) �= 0 contributes oscillations, but we focus 
exclusively on the real parts of eigenvalues in the present 
study.) The timescale over which these changes occur is set 
by |Re (λk)|

−1 ≡ |λk|
−1, that is, the absolute value of the real 

part of λk (λk has units of years−1). The inverse timescale, 
λk, determines how quickly the average individual reaches a 
steady-state. Since the zk are independent via eqn (3), events 
or interventions that modulate only E (zk) will not affect any 
other E

(
zj
)
. The payoff of this approach is twofold: aging 
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information gets compressed into a few specific variables, and 
the interconnected system behavior is greatly simplified.

The zk are able to drive the observed BAs through the map-
ping P�z = �b, which will spread out the effects across several 
BAs since P  is often dense (23). In general, the slowest zk 
(greatest λk) have the slowest recovery (λk > 0 never recover); 
previously, we observed that the key zk driving changes in �b 
are always among the slowest (23) (for health biomarkers).

The eigen-decomposition also lets us decompose the net-
work, represented as a matrix of weights W , into a sum of 
sub (eigen)-networks (matrices),

W =
∑
i

λiP.i ⊗ P−1
i.

(4)

where P· i is both the ith column of P  and the ith eigenvector, 
and �x⊗ �x ≡ �x�xT defines the outer product, ⊗. Each eigen-
value, λi, has associated with it a subnetwork, P· i ⊗ P−1

i· . The 
network is the sum of all subnetworks, weighted by their 
associated eigenvalues (e.g., Supplementary Figure S2). This 
permits us to visually analyze the effective network for each 
zk using their associated eigenvalue-eigenvector pair, λk and 
P· k ⊗ P−1

k· .
We estimated Λ, W , and Σ using linear regression as 

described in Supplementary Material. We also iteratively 
impute the expected model mean for all missed measure-
ments, as described in Missing Data.

Data
We use publicly available longitudinal data from Li et al. 
(9) Their data are derived from the Swedish Adoption/Twin 
Study of Aging (SATSA), and include: age, sex, and 9 BAs. The 
population included N = 845 individuals (342 males), average 
age at entry: 63.6 ± 0.3 years (standard deviation: 8.6, min: 
44.9, max: 88.0). Individuals were regularly measured with 
median ∆t = 3 years (interquartile range: 2.3–3.4 years) and 
a median number of 4 measurements per person (interquartile 
range: 3–7 measurements, max: 9). Survival data were not 

included in the data set, and patients were instead labeled as 
dropouts after their last measurement.

The BAs used in the present analysis are summarized in 
Table 1. We considered 9 BAs from 4 biological scales: 
genetic, epigenetic, system, and entire organism. BAs were 
harmonized to the same scale (~years) as follows: Telomere 
was multiplied by 69.29 and then we added 20.72 to match 
the standard deviation and mean of CA. Similarly, Cognition 
was multiplied by 0.9440 then we added 21.34. We model 
the dynamics of the 8 BAs (“predictors”) and hold out the FI 
as a longitudinal health outcome, since it is a good predictor 
of risk of adverse outcome such as morbidity and mortality 
(18,30) (the FI is also non-Gaussian (27), in contrast to our 
model assumptions). We fit a more general network including 
the FI and CA in Supplementary Material.

Statistics and Data Handling
All analysis and statistics were performed using R version 4.1.1 
(31). Errors were estimated by bootstrapping using 100 resam-
ples, unless otherwise specified. All statistical tests are z-tests, 
unless otherwise specified. All error bars are standard errors, 
unless specified otherwise. Fitting and simulating functions, 
as well as fitted parameter values, are available on GitHub at 
https://github.com/GlenPr/stochastic_finite-difference_model.

Preprocessing
Before fitting, we transformed the BAs at each timepoint 
using principal component analysis (PCA) where the trans-
formation was learned from the first timepoint (except 
for the diagonal model). The transformation is isomor-
phic (information-preserving) (23) so we estimated model 
parameters in PC-space then mapped them into BA-space. 
The number of PCs to use was selected by minimizing the 
632-corrected RMSE, which was 8 (max/information pre-
serving). 632-correction uses a linear mixture of 63.2% 
out-of-sample test error and 36.8% in-sample training error 
(23). We used PCA because selecting fewer PCs than BAs can 

Table 1. Biological Age Summary (9)

Biological Age Risk Direction* Scale Input Output/Pooling

Frailty index (FI)† Up Organism Health deficits‡ Mean

Functional aging index (FAI) Up Organism Sensory, grip, pulmonary, and gait§ Standardize then average

Cognition Down System (brain) Cognitive testing PC1

Physiological Age (PhysioAge) Up System (cardiometabolic) Biomarkers and physical exam∥ PCA then Klemera-Doubal (7)

GrimAge Up Epigenetic¶ CpGs Mortality risk#

PhenoAge Up Epigenetic** CpGs Mortality risk††

Hannum Up Epigenetic CpGs CA‡‡

Horvath Up Epigenetic CpGs CA‡‡

Telomere Down Genetic Telomere length
standard deviation

—

*Direction of change with increasing chronological age.
†Reserved as an outcome measure of individual health.
‡Score from 0 (none) to 1 (full): disability, disease, and self-reported ill-health.
§Self-reported hearing/vision, grip strength, lung strength, and gait speed.
∥Male: body mass index, waist-to-height ratio, weight, systolic blood pressure, diastolic blood pressure, hemoglobin, serum glucose (log), and 
apolipoprotein B. Female: hip circumference, waist circumference, systolic blood pressure, serum glucose (log), and triglycerides (log).
¶Trained to emulate smoking pack years and plasma proteins: adrenomedullin, beta-2-microglobulim, cystatin C, GDF-15, leptin, PAI-1, and tissue inhibitor 
metalloproteinases 1 (6).
#Linearly transform mortality risk to match mean/standard deviation of chronological age (6).
**Trained to predict time-to-death, which includes a proportional hazard from: albumin, creatinine, serum glucose, C-reactive protein, lymphocytes (%), 
mean red cell volume, red cell distribution width, alkaline phosphatase, and white blood cell count (5).
††Invert 10-year multivariate mortality risk (Gompertz + proportional hazard with 9 covariates) (5).
‡‡CA = chronological age.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/article/79/10/glae021/7516441 by D
alhousie U

niversity user on 16 O
ctober 2024

http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glae021#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glae021#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glae021#supplementary-data
https://github.com/GlenPr/stochastic_finite-difference_model


4 The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 2024, Vol. 79, No. 10

avoid collinearity—as was done in Supplementary Material 
when the FI and CA were included in the network. A priori, 
Telomere was initially batch adjusted using linear regression 
(32), we observed that Telomere was normally distributed but 
included a few extreme outliers (right tail). Since these could 
be artifacts of the batch adjustment, we excluded all outliers 
with p < 10−5 (9/6006 � 1% of entries).

Model Selection
For initial model selection, we minimize the RMSE and mean 
absolute error (MAE). We used 632-corrected error values, 
since these have minimal bias for our model (23). For ties, 
we maximize the area under the receiver operator character-
istic curve (AUC) (33) of the 8 pooled BAs worsening in the 
next timestep, which is the probability that the prediction 
will correctly rank individuals who will see an increase in BA 
as higher than those who will not (34). We select between 
a fully flexible W  (“FullW”) and 3 simplified versions: the 
null model (with W = 0), diagonal in BA-space (“DiagW”), 
or diagonal in principal component–space (“SymW,” which 
has symmetric W ).

Missing Data
Data were missing due to missed measurements and dropout 
at an overall rate of 76%. We imputed the missed measure-
ments and considered the effect of imputing dropped patients 
in Supplementary Material—the latter made no visible dif-
ference to the final results. Excluding dropout, the majority 
of (“predictor”) BA values were missing (53%), which broke 
down as the following missingness: 20% (PhysioAge), 23% 
(Cognition), 27% (FAI), 60% (Telomere), 74% (Horvath), 
74% (Hannum), 74% (PhenoAge), and 74% (GrimAge). The 
FI was missing in 20% of cases.

Missing data were initially imputed by carrying forward 
the last measurement, then reversed and carried backwards, 
then we imputed any remaining missingness using the mean 
of a multivariate Gaussian independently for each timepoint. 
This initial imputation was replaced at each fit iteration (×5) 
by the mean model prediction (expectation-maximization). 
See Supplementary Material for full details.

Failure to impute could lead to biased conclusions (35) 
since most missingness in clinical studies is due in part to 
poor health (36): here we observed that individuals missing 
all epigenetic BA measurements were significantly older (p 
= 10−10, Wilcoxon test). Imputed values for these BAs were 
higher than observed, ostensibly accounting for this effect. 
The relatively high missingness makes imputation quality 
important. Imputation quality was visually assessed as good, 
with realistic dispersion, trajectories, and age-dependence 
(Supplementary Figures S3 and S4). The available case 
analysis had much lower significance levels, but captured 
most of the coarse-grained features of the imputed analysis 
(Supplementary Figures S7 and S8). Multiple imputation may 
give a better estimate of true effect sizes since it accounts for 
imputation uncertainty, see Supplementary Figure S8; quali-
tative results were identical to our primary imputation result. 
We consider only the singly imputed analysis in the main text. 
All outcome measures consider only observed values.

Results
We compared several model variants, notably: the full model 
according to eqn (1) (FullW), the diagonal model eqn (3) 

either in the PCA basis (SymW) or with the raw BA vari-
ables (DiagW), and the null model with W = 0. The diago-
nal elements parameterize self-recovery from perturbations, 
while the off-diagonal elements parameterize interactions 
between the variables. The symmetrical W  has only undi-
rected links (bidirectional interactions). The RMSE and MAE 
were worse both for the null model and for the noninteract-
ing model (DiagW)—but did not discriminate the asymmet-
ric W  (FullW) from the symmetric (SymW). This indicates 
that interactions were present and important for prediction 
(W �= 0 and not diagonal). To break the tie between FullW 
and SymW, we picked the one which best predicted the direc-
tion of change in BA at the next timestep (BA went up in 
60% of measurements and down in 40%). We found that 
FullW performed better at predicting this worsening, having 
both lower MAE at 68% confidence and higher AUC at p = .1 
using the DeLong test (33) (combined: .04 ≤ p ≤ .1). Our 
final model (FullW) predicted future values with accuracy 
R2

train ≈ R2
test = 0.65± 0.01, RMSE632 = 5.75± 0.09 years, 

and worsening AUC of 0.764± 0.005.
The interaction network, W , estimated from the data is 

presented in Figure 1. W  indicates that PhysioAge is the cen-
tral node and the primary driver of changes over time (the 
strongest total outgoing links), with GrimAge as an import-
ant secondary, high-connectivity node. Observe that there is a 
positive feedback loop between the highest-connected nodes, 
PhysioAge → GrimAge → PhysioAge. Explicit inclusion of 
CA and the FI into the network does not appreciably change 
the connectivity of these nodes (Supplementary Figure S22); 
nor does the choice of imputation strategy (Supplementary 
Figure S7). Note that in Supplementary Material, we confirm 
that the FI is not connected to Hannum, Horvath, PhenoAge, 
or GrimAge, as was reported elsewhere using an unrelated 
statistical model (37). Returning to Figure 1, the high connec-
tivity of PhysioAge would allow it to very quickly propagate 
dysfunction via eqn (2).

Drift of the BAs with age is the result of the pursuit of equi-
librium, µj. µ0j ranged from −120 ± 100 to 35 ± 24 years for 
BAs which decrease with age (Cognition and Telomere) and 
127 ± 38 to 190 ± 82 years for the increasing BAs (remain-
ing). (Sex effects were small, ≤10 years; Supplementary 
Table S1.) In all cases, the equilibrium position is far out-
side of the age distribution of the population, causing them 
to drift coherently with age in their respective risk directions 
(Supplementary Figure S14). In the z-picture this effect is con-
centrated into z1 and z2 which drift the most, and z3 which 
saturates around age 90—the remaining zk quickly equili-
brated and stopped changing with age (Supplementary Figure 
S13). This is an indication that age-related changes are con-
centrated into the slowest natural variables, z1, z2, and z3, and 
primarily into z1.

The eigenvalues of W  determine system stability, so our 
focus is on the greatest eigenvalues, which therefore recover 
slowest (i.e. those closest to zero since they are negative; 
mean-stability is determined by eqn (3)). The eigenvalues 
are presented in Figure 2A. Both z1 and z2 (green triangles) 
are notably slower than the slowest diagonal elements W11 
and W22 (orange points). The associated timescales are 
|λ1 |−1

= 127± 53 years and |λ2 |−1
= 44± 8 years. Observe 

that both timescales are on the order of a typical human lifes-
pan and are significantly longer than the remaining lifespan 
of the population, which were all older adults (baseline ages 
45–88). The timescales, |λk |

−1 determine how quickly the zk 
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Figure 1. Network interactome. Both representations: matrix (A) and network (B) are equivalent. PhysioAge is the dominant node with the strongest 
connections, directly driving almost all other BAs (but not Telomere p = .3). GrimAge has weaker connections but also has many outgoing connections. 
All links are significant at p < .05. (A) Network weight matrix, W . Our model estimates each interaction parameter in this matrix. Inner point is limit of 
95% CI closest to 0: point is most visible for the least significant tiles. Nonsignificant tiles are whited-out (p > .05). The elements leaving PhysioAge are 
typically larger than those leaving GrimAge, and have higher statistical significance (Supplementary Figure S8). Both have weak diagonal recovery Wjj.  
Matrix is rank-ordered by diagonal recovery strength. (B) Network representation. Networks encode conditional dependence structures: variables are 
conditionally dependent if and only if there is a link directly connecting them. For example, GrimAge and Cognition are conditionally independent, since 
they only interact via an intermediary (PhysioAge). Node size, nk =

»∑
j �=k W

2
jk  (outgoing strength). Node color indicates biological scale (see Table 1).
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converge to the steady state (eqn (3)). This means that the long-
time behavior of the system will depend increasingly on z1 and 
z2, which will dominate the mapping into the BAs via �b = P�z .  

In Figure 2B we visualize the λ1-eigenvector using eqn (4). 
The λ1-eigenvector is centered on a fully-outgoing-connected 
PhysioAge with feedbacks between GrimAge and Cognition. 
This means that z1 represents the collective action of these 
3 BAs driving changes in all 8 BAs. Although these 3 BAs 
already have the slowest marginal recoveries, Wjj, the collec-
tive action of z1 is even slower due to interactions between 
the BAs.

This bottlenecking of aging information into z1 and, to 
an extent z2, is easily confirmed by looking at the correla-
tion matrix, Figure 3A. z1 is strongly correlated with almost 
every BA (weakly with Telomere), and always in the same risk 
direction. z2 shares these correlations except for Cognition, 
suggesting that splitting between z1 and z2 is primarily due to 
differences in cognitive aging rate. Both also had the stron-
gest correlations with CA and the FI of any zk. Multivariate 
ANOVA confirmed that the real part of z1 was the dom-
inant predictor of the FI (59% of the explained variance). 
Correlations with the FI were concentrated into the lowest zk,  
which is clearly demonstrated in the multiply imputed cor-
relations in Supplementary Figure S9 (which accounted for 
imputation error). In Supplementary Material, we demon-
strate that z1 and z2 are the furthest from equilibrium, which 
causes them to drift for the entire human lifespan leading to 
the observed correlation with CA, for example, Figure 3B. 
Altogether, it appears that the observed age-related changes, 
including health, are concentrated into the least stable dimen-
sions, particularly z1.

Our model, eqn (1), encodes causal dependence of the cur-
rent timepoint on the previous timepoint. Hence, we can sim-
ulate the dynamics after a hypothetical intervention using eqn 
(1) and the estimated model parameters. We operationalize 
interventions as an instantaneous rejuvenation of a targeted 
BA at a specific CA, in a manner which emulates the switching 
of mortality risk immediately due to an antiaging intervention 
(38). We simulated matched case and control populations for 
various interventions, each population contains 50 000 males 
and 50 000 females and starts at age 60; initial values were 
sampled from the fully observed BAs of sex-matched individ-
uals in the age range 55–65. We simulated using eqn (1) with 
timesteps of 1 year. We include a simple model for the FI as a 
function of the BAs and CA, R2 = 0.30, to demonstrate how to 
track the expected change in health as a function of the BAs 
(details in Supplementary Material).

Having observed the central role of PhysioAge in Figure 1, 
we simulate the impact of a beneficial intervention admin-
istered at age 70, which instantly rejuvenates PhysioAge by 
10 years (Figure 4). The intervention causes complex, delayed 
effects in the other BAs, including an adverse effect: a small, 
transient telomere shortening (all other BAs improved). This 
is due to the intervention effect propagating through the net-
work. For example, Telomere worsens (shortens) for about 5 
years post-intervention then recovers and ultimately improves 
after about 10 years post-intervention. Observe that, in con-
trast to the BAs, the relative FI continuously improves with 
time post-intervention. This is due to the unstable nature of 
the FI: which grows exponentially with age (27) due to com-
pounding (propagating) secondary damage. Conversely, if 
we simulate an adverse event, say of disease, which increases 
PhysioAge by 10 years then we see the same effects with the 
sign flipped (Supplementary Figure S15). The long-term con-
sequences of the adverse event continue to worsen the relative 
health (FI) of the case versus control even after the disease. 

Figure 2. Natural variables of W . Natural variables do not interact, 
allowing us to analyze their stability. We observed a very weak stability 
(A), indicative of a slow recovery rate, λ1 ≈ 0. The associated eigenvector 
is visualized in (B), comparing to Figure 1A we see that the slowest 
eigenvector captures the dense outgoing connections from GrimAge and 
PhysioAge, including feedback loops. (A) Network stability (resilience). 
Eigenvalues, λk, determine recovery rate, −λk. Although the network 
diagonal (Wjj) indicates that some biomarkers recover slowly, the 
network as a whole recovers even slower along λ1 and λ2. (Eigenvalue 
rank is used to index the zk.) (B) Eigen-network of z1. Associated with 
each eigenvalue is an eigenvector. The matrix of eigenvectors, P, is used 
to generate the natural variables as linear combinations of BAs (�z = P−1�b ).  
The slowest recovering/least stable direction, z1, is predominantly 
PhysioAge, Cognition and GrimAge, all connected into the remaining 
BAs. Plotted is P1· ⊗ P−1

1· , where P1· is the first eigenvector (eqn (4)). Note 
the role of well-connected BAs with feedback loops: the z1 eigen-network 
has links both above and below the diagonal.
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This is consistent with results from a computational network 
model of disease, which show the long-term FI-effect is due to 
secondary, compound (“propagated”) damage (39).

It is much easier to understand the effects of the interven-
tion on PhysioAge using the natural variables, zk, as shown in 
Figure 4B. All natural variables, zk, connected to PhysioAge 
immediately improve upon the rejuvenation, then the zk 
return to normal on the timescale set by |λk |

−1, which means 
that after 20 years all of the fast zk have mostly recovered. 
This explains why we should primarily concern ourselves 
with the greatest eigenvalues, λ1 and λ2, since their respective 
natural variables are the only ones with lasting, long-term 
impacts—good or bad.

Intervening directly on the natural variables, zk, gives 
a greatly simplified picture (Supplementary Figure S16). 
Because the zk don’t interact with each other, the interven-
tion pinpoints one zk that immediately improves, whereas 
the other zj are unaffected. Depending on the stability of the 
intervened zk, the effect of the intervention is either gradu-
ally lost with age (stable), persists indefinitely (marginal sta-
bility/slow dimensions |λk| ∼ 1 lifespan−1), or improves with 
increasing age (unstable). In the present study, interventions 
which improve z1 are most desirable since they have the stron-
gest relationship with health (Figure 3) and persist for a typ-
ical human lifespan. See Supplementary Material for other 
simulated interventions.

Figure 3. Natural variable correlates. (A) Spearman correlations. z1 is 
strongly correlated with each other BA, CA, and the FI (weakly with 
Telomere). (B) z1 is strongly correlated with CA. As such, z1 is capturing 
essential aging information, including CA and individual health (as 
estimated by the FI). (Imputed values are included only for the zk.)

Figure 4. Simulated intervention on PhysioAge. We simulated a 
hypothetical intervention at age 70, which instantly rejuvenates 
PhysioAge by 10 years. (A) BA-picture. ∆BA ≡ BAcase − BAcontrol. We 
see an immediate rejuvenation of PhysioAge at age 70 due to the 
intervention, whereas the remaining BAs have complex delayed effects. 
For example, Telomere temporarily worsens (arrow) then recovers and 
ultimately rejuvenates. (B) z-picture. ∆z ≡ zcase − zcontrol. When working 
with natural variables, the same intervention effect is immediately 
spread across all zk which are connected to PhysioAge through �b = P�z  
(P  is dense). Each zk simultaneously responds then the zk with fast 
recovery times quickly revert back leaving only the slow recovery times, 
z1 and z2. For the FI, the relative improvement gets better over time 
since compound (propagated) damage is avoided by the rejuvenation 
(the FI is unstable). The FI has its own y scale as indicated. zk have been 
standardized for convenient comparison (zero-mean, unit-variance). The 
sign of zk is arbitrary due to idiosyncrasies of the eigen-decomposition, 
but could be aligned using their correlation with age or health. Case and 
control have been perfectly matched for age, sex, and stochastic effects. 
See Supplementary Material for other simulated interventions. Band is 
standard error (often smaller than line width).
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Discussion
The ongoing proliferation of new BAs (biological ages) pres-
ents 2 opportunities for dynamical network analysis: (i) BAs 
can be used to generate network interactomes to better under-
stand how age-related changes are naturally orchestrated and 
for comparison to theory, and (ii) there is an increasing need 
for a robust method of aggregating multiple BAs. Here, we 
address both opportunities. Using a dynamical model with 
minimal assumptions, we are able to estimate an interac-
tion network from a collection of BAs. We can also apply 
eigen-analysis to the network such that we are able to gen-
erate dynamically independent aggregate BAs—natural aging 
variables. The slow recovery and age-related drift of these 
variables reflect their underlying importance in quantifying 
the aging process. We propose that such natural variables are 
the natural language to communicate the aging process, in the 
same manner that spectral signal analysis has come to domi-
nate many quantitative disciplines.

The estimated interaction network, W , encodes conditional 
dependencies across BAs of the current timestate from the pre-
vious timestate. This permits causal predictions. For example, 
Wij > 1 indicates that if bj is lower than µj  at timepoint tn then 
it will push down the ith variable (bi) by time tn+1 (eqn (2)).  
We observed that the µj  are large enough such that the bj 
are always pushing each other and are autonomously drifting 
toward worse health. This drift fills the same role as a “mal-
lostatic” drift with age (23), µ(t), but without explicit inclu-
sion of time. High outgoing-degree nodes, such as PhysioAge 
and GrimAge, play a key role since they push the other BAs, 
such that changes to PhysioAge or GrimAge naturally prop-
agate into the other, downstream BAs (e.g., rejuvenation). 
These relationships are learned from observational changes, 
rather than interventional (28). However, we know that indi-
viduals experience many interventions throughout their lives 
due to medical interventions, lifestyle changes, and stressors 
of living, such as disease. This suggests that our observation, 
W , should be consistent with perturbative (small) interven-
tions. In support, we found that we were better able to predict 
worsening of BAs by including causal relationships.

Using multiple BAs, we were able to estimate an informa-
tive network of interactions, which can enhance our knowl-
edge of the aging process. In the present study, we used BAs 
of varying biological scales ranging from genetic (Telomere) 
to whole organism (FAI). We observed that PhysioAge, rep-
resenting primarily cardiometabolic system changes, was 
the central node with outgoing arrows directly affecting all 
other BAs (the Telomere link was not significant). This means 
that changes to PhysioAge will propagate to the other BAs, 
eqn (2). This permits PhysioAge to drive the other BAs. We 
observed a weaker, but similarly well-connected effect ema-
nating from GrimAge including feedbacks with PhysioAge. 
GrimAge had a strong association with mortality for this 
data set (similar to the FI) (9), and may represent damage. 
This implies that cardiometabolic, system-level dysfunction 
is essential to age-related changes, complemented by genetic/
epigenetic damage with feedbacks between the 2 scales. Both 
PhysioAge and GrimAge had the strongest Spearman cor-
relations with CA at 0.90 and 0.79, respectively (Hannum 
was third with 0.73). This supports the interpretation that 
age-related changes emerge first in those 2 variables then 
propagate outwards, causing the correlation with CA to drop 
as the information gradually attenuates through the network 

connections. The key natural variable, z1, has a strong asso-
ciation with PhysioAge with important contributions from 
GrimAge, suggesting that well-connected nodes with feed-
backs caused the weak stability, which appears to be primar-
ily related to metabolic functioning.

These observations are consistent with theory. Systems 
biology informs us that metabolism is a vulnerable point 
due to its bottleneck (“bow-tie”) through glucose (12,22); its 
large number of outputs also make it well suited for prop-
agating dysfunction—just as we observed with PhysioAge. 
Notably, metabolism is considered 1 of 7 “pillar” causes of 
aging, another is macromolecular damage—which is osten-
sibly captured by GrimAge (14). The hallmark theory of 
aging specifically includes epigenetic changes and genomic 
instability as 2 of 12 “hallmarks”—which GrimAge may be 
sensitive to—but is considerably less specific toward meta-
bolic changes, grouping cardiometabolic changes into generic 
changes to intercellular communication (15). This could be an 
indication that the hallmark theory lacks specificity, although 
our suite of BAs may be similarly limited. Our suite of avail-
able BAs constrains our model to effective dynamics (26), 
which may differ from the oracle truth—although we can use 
CA as a catch-all for unaccounted degrees of freedom such as 
unmeasured BAs (Supplementary Material). Fortunately, BAs 
are becoming increasingly specific in response to demands for 
high-dimensional representations of aging (2), such as bio-
logical system-specific ages (11). As new BAs emerge, we can 
continue to use our approach to refine our understanding of 
the causal relationships underlying aging.

Although the network topology is informative, the dynami-
cal behavior of the system as a whole is obfuscated by its com-
plexity. Eigen-analysis identifies weakly stable, slow-recovery 
eigenvalues and associated eigenvectors, which can be used 
to generate aggregate biomarkers, that is, natural variables. 
The means of natural variables do not interact, giving them 
simple and intuitive dynamical behavior over time: stable 
natural variables simply decay toward µj  on a timescale of 
eigenvalue−1 according to eqn (3). Previously, we observed 
that across 4 data sets (2 mouse and 2 human) the dominant 
natural variable for predicting survival or dementia onset 
was either the first or second slowest eigenvalue, which were 
always stable but near 0—specifically they took an entire 
lifespan to recover (23). Ostensibly, these natural variables 
capture irreversible changes, such as damage. Across studies, 
we consistently observe that the greatest eigenvalues (slow-
est; most positive) are associated with the salient features of 
aging. In the present study these were z1 and z2 which had 
the strongest correlations with CA and were associated with 
health. In contrast to ad hoc approaches to finding the best 
aggregate BA (10,11), the natural variables are essential fea-
tures of the dynamical system as a whole. As such, they do 
not interact and they become increasingly dominant with 
age, as they store information from stochastic events, mak-
ing them dominate all of the BAs. The implication is that 
aging becomes increasingly simple and dependent on these 
essential natural variables with age (effectively leading to 
reduced dimensionality (18)). This is a consequence of the 
mapping �b = P�z , which leverages redundancies in the BA 
representation to reduce the dimensionality. This means that 
aging may be lower dimension that popular theories suggest 
(14,15). What’s more, the dimensionality of aging may be per-
turbative in the sense that the first dimension provides the 
most important information and the subsequent dimensions 
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provide less and less, consistent with previous computational 
studies (17,18). In general, we see that the long-time dynam-
ical behavior is dominated by the slowest network eigenval-
ues, representing the directions of slowest recovery and, by 
implication, the lowest resilience (25).

There is significant interest in using BAs to quantify the 
effects of antiaging interventions (1,2), with some going so far 
as to define rejuvenation by its prolonged effect on biological 
age (2). Our simulated interventions highlight the utility of 
dynamical stability (eigen) analysis in disambiguating network 
dynamics and identifying optimal intervention targets. Using 
our estimated model parameters, we were able to simulate a 
hypothetical intervention at age 70 that instantly rejuvenates 
PhysioAge by 10 years. Improvement to a BA postinterven-
tion has been observed in a number of experiments with 
epigenetic BAs (2) and other BAs, such as the FI (20). A con-
sistent problem that emerges from these experiments is that 
health may improve along one dimension at the expense of 
another, such as increased tumorigenesis postrejuvenation 
(2), reduced visual acuity following antiaging treatment via 
metformin (20), and increased frailty following mTORC2 
disruption (19)—which is inhibited by rapamycin treatment. 
Such pleiotropic effects are mediated through some biological 
interaction network—albeit typically an unknown one.

We observed a similar pleiotropic effect in our simulated 
intervention, wherein 7/8 of the BAs showed immediate or 
delayed rejuvenation but worsening was observed in Telomere 
(shortening) during a 10-year-long transient effect. The gen-
eral issue is that the interaction network obscures the effects 
of interventions on a single BA. Such a seemingly simple inter-
vention perturbs the network, which then adjusts all of the BAs 
through its connections—leading to delayed and unexpected 
downstream effects. This problem can be avoided by work-
ing in the natural variables, zk. Because the mapping is linear 
and invertible, we can easily transform between the BA and 
z-pictures as needed. When working in the natural variables 
the intervention is greatly simplified: all stable zj revert to the 
control with a timescale 

∣∣λj
∣∣−1

, and all unstable zk improve 
continuously postintervention with timescale |λk|

−1. This sim-
plifies the problem since we immediately know that 

∣∣λj
∣∣−1

 is 
the length of time that a stable zj will differ from control, 
so we only need to monitor the key natural variables which 
exhibit high risk and low recovery: λk � 0—the remaining zj 
will quickly forget the perturbation. This requires only that 
we determine the relevance of each zk to health, which can 
be done prior to an interventional study (and may naturally 
compress into the lowest zk). Identifying unstable and weakly 
stable natural variables, and the interventions that modulate 
them should be a fruitful topic of future research.

An unstable natural variable would be particularly import-
ant, although we have now failed to observe an instability 
in 5 data sets using the SF model, using either BAs or health 
biomarkers (23). An instability would lead to super-linear 
growth, such as are observed in the FI (27), dynamical FI 
(26), and specific plasma proteins (8). Since natural variables 
drive observed variables via �b = P�z , unstable natural vari-
able(s) could be of prime importance since all stable natural 
variables should eventually equilibrate such that all observed 
age-related changes are driven by the unstable natural vari-
able(s). Furthermore, amelioration of an unstable natural 
variable would result in continuous life-long improvements 
such as we saw with the FI in our simulated interventions. 
However, the vast majority of health biomarkers change 

linearly with age (40), and BAs are typically designed to track 
CA in units of time, which, by definition, increases linearly 
with age. The choice of units used to quantify aging may 
therefore play a role in determining what super-linear growth 
means, and therefore stability. A second issue is the effect of 
a population-level picture, which can mask unstable sub-
populations, such as those experiencing or transitioning into 
chronic disease. This presents an opportunity for more pow-
erful statistical models able to capture such individual effects. 
Note that a slow instability is indistinguishable from linear 
drift until advanced ages—where data are sparse. Our current 
perspective is that organisms live most of their lives in a stable 
regime of approximately linear decline until a tipping point 
is reached and nonlinear collapse ensues, quickly leading to 
organism death or chronic disease.

Although linear drift is reasonable population-level behav-
ior for the BAs and zk, a tipping point leading to super-linear 
behavior is necessary to make sense of terminal decline. 
Terminal decline occurs in biomarkers of death wherein 
immediately prior to death they become much worse, driving 
up the hazard and dropping the survival probability toward 0 
over a short period of time. This effect can be seen empirically, 
for example, in the FI (41), cognition (42), and gait (42), which 
show a dramatic change in slope occurring around 3–4 years 
prior to death. Two dynamical phases are needed to capture 
this effect, such as those elucidated by the saturating-repair 
model of aging (43,44). In this model, age-related decline 
begins as a stable, approximately linear system until repair 
processes “saturate” and a new super-linear phase begins. 
This model unifies ideas of critical behavior (26,45,46) with 
damage and repair (47,48), which have been increasingly used 
within the aging modeling literature. Our prior results from 
mice and humans support the important predictions made 
by the saturating-repair model, including “mallostasis” (23): 
the correlation between mortality hazard and linear drift rate 
(43). The linear phase is characterized by a linear increase in 
the homeostatic steady state and is ostensibly driven by asym-
metric transitions such as epigenetic methylation and accu-
mulation of disease (49). We hypothesize that the linear phase 
serves to push individuals toward tolerance thresholds (tip-
ping points) upon which a super-linear phase ensues, quickly 
leading to death or disease, for example, due to the saturation 
of repair processes.

It is important to understand that our model is of slow, 
linear dynamics in W  at timescales slower than the interval 
between measurements (years). Faster dynamics are pushed 
into the noise term, Σ. The effects of the fast dynamics are 
to cause biomarkers to rapidly change in values from day to 
day, whereas the slow dynamics estimated by W  are long-
term changes over the course of human-equivalent years. The 
resilience score we estimate using W  represents resilience on 
the timescale of years, which (we believe) is a good time
scale to assess aging. Nevertheless, this is in contrast to typ-
ical measurements of biological resilience, which are on the 
short timescale of weeks and shows a clear age-dependence  
(45). In contrast, we observed no clear age-dependence  
for the slow-resilience assessed by our W -analysis, not-
ing the large error bars (Supplementary Material). A clear 
age-dependent drop in the eigenvalues of W  could be an 
indication of saturating repair, but the effect is indirect 
and bounded at 0 (43,44), which may make it difficult to 
observe. The correct interpretation of W -resilience is cur-
rently unclear. W  is capturing the long-term decline due 
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to aging through the longitudinal correlations it causes in 
the BAs. The smallest eigenvalues have the longest memo-
ries and hence they are the natural place for information 
regarding long term and irreversible changes to build up, 
making the associated eigenvectors excellent predictors of 
age-related health.

Our relatively modest predictive performance of wors-
ening (AUC 0.764 ± 0.005) and explained FI variance of 
approximately 30%, suggest that we have only captured 
some of the age-related changes. Our model achieved a 
prediction error on the order of approximately 6 years for 
BA progression after an average of 3 years of natural aging, 
representing 65% of the variance. Model error encapsulates 
the net effect of 4 major sources: missing values, unob-
served variables, stochasticity, and model misspecification. 
The missingness was particularly high in the present study, 
especially for the epigenetic BAs, which were more likely to 
be missing for older individuals (thus nonrandom), which 
could lead to bias—even with good imputation (35). This 
missingness reduces data quality and quantity, which may 
explain why we did not achieve statistical significance when 
comparing only the AUC of FullW versus SymW (p = .1). 
Second, we relied on only 8 BAs to completely predict 
future health including only sex as a covariate. This limits 
predictive power and our ability to detect causal relation-
ships because we cannot identify causal connections from 
unobserved variables (50). Although it is impossible to cap-
ture all information, we would hope to find a saturation 
“elbow” at some larger number of BAs. Third, in addition 
to intrinsic stochasticity, there is substantial stochasticity 
owing to nonlab conditions (individual variability) and 
measurement noise, putting severe limits of predictability. 
Finally, our model is a local approximation of near-stable 
homeostasis and does not capture sudden changes, such as 
may occur due to the emergence of an underlying chronic 
condition. Although the model could incorporate sudden 
changes via µn, this is only possible when they are specified.

There is a trend toward increasingly specific BAs, which 
are compatible with nonredundant, multivariate representa-
tions (11,18). Our approach complements these representa-
tions because it provides both causal structure and generates 
salient aggregate features. Our approach is not limited to 
BAs, it works for all continuous-valued, longitudinal bio-
markers. For example, emerging ‘omics data, such as dynam-
ical changes to proteomics (8) could be a natural target for 
dynamical network stability analysis. We have previously 
applied the approach to physiological biomarkers including 
blood tests, body weight, blood pressure, and other generic 
health biomarkers (23). Although correlation analysis is the 
de facto standard, it has a severe shortcoming in that it esti-
mates unconditional relationships, which therefore cannot 
represent a true network (they do not satisfy the standard 
axioms of graph theory (51) and hence their interpretation 
is ambiguous at best). A network link indicates a conditional 
relationship given all variables in the network, permitting easy 
and intuitive interpretation. Our approach is very general, 
and we suggest analysts consider using it any time they apply 
correlation analysis to longitudinal data. We think that the 
greatly enhanced interpretability is worth the modest addi-
tional computational burden. For more quantitative research-
ers, our linear model could easily be replaced with a more 
complex model, such as a deep neural network (17), and the 
analysis of independent natural variables could remain the 

same. The key natural variables we observe may also be use-
ful measures for secondary analysis, such as looking for early 
warning signs for the onset of chronic disease (52).

Our central hypothesis is that BAs provide the raw infor-
mation needed to generate interaction networks, which can 
then be analyzed as a whole using dynamical stability (eigen) 
analysis. Our work highlights the utility of approaches bor-
rowed from complexity science and systems biology. Our 
results are consistent with aging having several of the key fea-
tures of complex systems: networks, motifs, and feedbacks, 
which we show play an important role in understanding 
age-related changes. This is direct evidence of the importance 
of complex and systems-level thinking (12) for furthering our 
understanding of aging. In summation, a simple, interpreta-
ble model of the dynamics can be leveraged to estimate the 
essential effects of aging, and infer the effects of perturba-
tive interventions. We demonstrate that analyzing our fitted 
data gives results consistent with known theory, making it a 
potential path forward to operationalizing and testing vari-
ous qualitative theories of aging. Far from being a curse of 
plenty, the proliferation of established, new, and increasingly 
specific BAs may be the key to quantifying and understanding 
the complex multidimensional changes which characterize 
the aging process.
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Supplementary data are available at The Journals of 
Gerontology, Series A: Biological Sciences and Medical 
Sciences online.
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